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- Preface

Gas plasma is the fourth state of matter, alongside solid, liquid and gas. There are many natu-
rally occurring events and man-made products related to gas plasma including aurora and
thunderstorms, and high-intensity discharge (HID) headlamp bulbs, oxonizers, semicon-
ductors and solar battery panels. As a result, gas plasma technology is increasingly important
in our life.

Among the various technologies, particular attention should be paid to the use of gas
plasma in sterilization and disinfection. Gas plasma treatment has helped to minimize the
contamination of medical instruments with infectious pathogens and toxins and, thus, the
prevention of hospital-acquired infection.

The purpose of this book is to bring together information on the current status and
future prospects of the state-of-art physical technique of gas plasma sterilization. The
chapters cover basic information on this method of sterilization, applications of gas plasma
technology to the inactivation of toxins and pathogens, possible mechanisms of gas plasma
sterilization, and verification and validation of the sterilization efficiency of gas plasma, as
well as discussing the challenges, limitations, and advantages of gas plasma sterilization, as
well as future research perspectives.

This book will provide a standard reference and indispensable roadmap of gas plasma
sterilization for students, engineers, and laboratory scientists. I hope that readers will enjoy
this book, obtain useful information for their own research, and be inspired by new ideas for
future research on gas plasma sterilization.

Akikazu Sakudo
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Introduction

Hideharu Shintani

Abstract

Gas plasma sterilization offers enormous potential as a broad-spectrum antimicrobial pro-
cedure. In this chapter we explain the types of errors that result from the ‘understanding
gap’ between the engineering researchers who are developing the gas plasma sterilization
technology and the microbiologists who aim to fine-tune it for their needs. Future ini-
tiatives to exploit this powerful technology would benefit from adopting multidisciplinary
approaches, involving close collaboration between microbiologists, chemists and engineer-
ing researchers.

Introduction

Gas plasma sterilization is currently of interest mainly to engineering researchers; however,
in many cases their publications contain significant errors because they do not have a back-
ground/understanding of microbiology and sterilization. As a result, several misconceptions
about the use and efficacy of the gas plasma sterilization process have been published. As
a result relatively few microbiological and chemical researchers are involved in gas plasma
sterilization research. In 2011, Sakudo and Shintani published a book in which they noted
that many current publications on similar topics contain several mistakes in their discussion
and interpretation of microbiology and sterilization. For that reason the authors included a
chapter entitled ‘Several Points to Consider When Conducting Plasma Experiments. How-
ever, no revisions or corrections have been published in the literature since then. Therefore,
the goal of this new gas plasma sterilization book is to summarize new up-to-date informa-
tion and critically evaluate the current status of the technology.

Common data interpretation errors

For example, one misinterpretation of the engineering studies is in regard to the meaning of
the required ‘6 log reduction’ for sterility assurance. A 6 log reduction does not mean zero,
as 10°=1, and the possibility of survival at a sterility assurance level (SAL) of 10°is 63%. A
6 log reduction is the requirement for the absolute bioburden method in ISO 14161, which
addresses biological indicator (BI) users only. The bioburden is the type and number of
viable microorganisms in or on the product, and in sterilization validation the real target of
sterilization is not the BI, but rather the bioburden. Bioburdens of 105 CFU (colony-form-
ing units)/carrier do not exist in real-life situations. For example, according to the absolute
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bioburden method in ISO 14161, an initial population of 10° CFU/carrier level (i.e. a few

CFU) that undergoes a 6 log reduction attains a SAL of 10-%; 1076 is the closest number to

zero, which was defined from the stochastics in ISO 11137-1.
To achieve a 6 log or 12 log reduction, the survivor curve must be a straight line. BI

manufacturers are required to use an initial population of 10 CFU/carrier, so reduction

by 6 logs to a SAL of 107 represents a 12 log reduction: this is required in ISO 11138-1 as

an overkill method for sterilization validation. An initial population of 105 CFU/carrier to

a SAL of 10 is not recognized as a 6 log reduction in ISO 14161. Since ISO 11138-1 is for

BI manufacturers and ISO 14161 is for BI users, researchers, as BI users, must obey the ISO

14161 requirements for sterilization validation. The main difference between ISO 11138-1

(BI manufacturer) and ISO 14161 (BI user) is that in ISO 14161, the overkill method is

described together with another method, but in ISO 11138-1, only the overkill method is

described. Detailed information about ISO requirements will be discussed in Chapter 13. Figure 1.2
Stacking is often mistaken as clumping in the BI (Fig. 1.1), and the presence of clumping etal. (201(

in the BI (biological indicator) is a serious problem. In order to attain a straight survivor

curve from an initial population of 10° CFU/carrier to a SAL of 1076 (a 12 log reduction),

the BI should be free from any clumping (Fig. 1.2). A 12 log reduction is required for BI

manufacturers in ISO 11138-1, but it is not always required of the BI user in ISO 14161.

To attain a 12 log reduction, it is necessary to avoid clumping in the BI; otherwise a curved

(tailing) survivor curve is obtained (Fig, 1.3A). In this case even a SAL of 10° cannot be

attained, indicating that sterilization validation failed. Official documentation of sterilization

validation is required, and relevant authorities conduct inspections to confirm sterilization

validation. The straight line survivor curves shown in Fig. 1.3B and Fig. 1.4 were obtained

using the BI shown in Fig. 1.2, which was free from clumping. These curves were obtained

with 10° CFU/carrier and a SAL of 10-%, which represents a full 12 log reduction (Figs. 1.3B

and 1.4).1SO 11138-1 requires that the coefficient correlation of the survivor curve must be

greater than 0.8 (ISO 11138-1, Normative Annex B). Figure 1.0

It is quite important to note that the D value (decimal reduction value, i.e., the time or (2007) An

. . . . - NW, Wast
dose required to decrease by 1 log) is only one per one microorganism. Often the tailing
phenomenon (Fig. 1.3A) can be explained by a difference in the kinetics of killing. There-
fore, D values are calculated for each kinetic curve, indicating that more than one D value

Figure 1.

(Fig. 1.2),

Figure 1.1 SEM observation of pile of clumping. Reproduced with permission from Shintani carrier to

et al. (2010). Reproduc
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Figure 1.2 SEM observation free from clumping. Reproduced with permission from Shintani

et al. (2010).

Microbial Population

10-

-
2

103

1054

3

SR

T Time/Dose |

Figure 1.3 Straight line and curved tailing survivor curve. Reproduced from McDonnell, G.E.
(2007) Antisepsis, Disinfection, and Sterilization, Types, Action, and Resistance, ASM Press,
NW, Washington DC, with permission from ASM Press.

- Logof CKFU

4 5 6 7 8

Exposure time (min)

Figure 1.4 Straight line of survivor curve using Bl from Fig. 1.2. When using a clump-free Bl
(Fig. 1.2), a straight line can be experimentally confirmed from an initial population of 108 CFU/
carrier to a SAL 107". A 6 log reduction takes 7 min, indicating that the D value is 1.2 min.
Reproduced with permission from Shintani et al. (2010).
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was present per microorganism, which is a serious mistake. Why does clumping cause tail- Th e
ing? The penetration depth of gas plasma is quite shallow (~10-20nm) except for oxygen
gas plasma, so when spores are in multiple layers (clumping), only those at the surface of the M OC
first layer are immediately killed. As a result, killing of the second or third layer is delayed by
the interference of the first layer, and this delay causes the observed tailing of the curve (Fig, S-t er

1.3A). Tailed survivor curves are not the true survivor curves. The BI Geobacillus stearo-

thermophilus ATCC 7953 is the standard endospore former used in gas plasma sterilization. .

The average size of G. stearothermophilus spores is 1 um x 3 um (rod) (Shintani et al., 2007), Hidehs
so if the BI has clumps, those spores below the surface layer will not be killed because the

penetration depth of gas plasma sterilization is ~ 10-20nm.

Advantage of gas plasma sterilization Abstrac
Because gas plasma penetration is so shallow (~10-20nm), the bioburden is killed and the In this cl
product itself is not damaged. To kill the bioburden without deterioration of the material tion are
being sterilized is called simultaneous attainment of material/functional compatibility and a spores. E
SAL of 1076, The bioburden is scattered on the surface of the product and 10-20 CFU/5001 are used
(Shintani et al., 2004, 2006) without clumping is the real estimated bioburden. This level erally us
of bioburden is scattered over a larger area of the product than the BI, so no clumping is shallow,
observed, and thus no tailing phenomenon is observed for the bioburden following ISO (SAL)o
14161 (absolute bioburden method). procedu
ibility w
Conclusion
In order to avoid further misinterpretation by the engineering researchers, we, as microbi- Introdt
ologists and chemists, need to contribute by conveying appropriate information and correct Ninety-
mechanisms to the engineers. Recently obtained sterilization mechanisms using spores plasma
are presented in this book. Additional useful information is also presented, including ISO compos
descriptions needed for future validation studies. Low-
Note that the technology utilized in the Sterrad® sterilizer (J&J Company) is beyond the pheric g
scope of this book so is not included. waves 0
oxygen,
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Theoretical Background and
Mode of Action of Gas Plasma
Sterilization

Hideharu Shintani

Abstract

In this chapter theoretical background and potential mode of action of gas plasma steriliza-
tion are described. Nowadays, gas plasma sterilization is widely utilized for sterilization of
spores. Because spores are more tolerant than vegetative bacterial cells, bacterial endospores
are used as the biological indicator (BI). Geobacillus stearothermophilus ATCC 7953 is gen-
erally used as the BI for gas plasma sterilization. Gas plasma sterilization penetration is quite
shallow, i.e. ~10-20nm from the surface, so it is easy to achieve a sterility assurance level
(SAL) of 1078 and material/functional compatibility compared with alternative sterilization
procedures. Simultaneous achievement of a SAL of 10~ and material/functional compat-
ibility will be discussed in detail in Chapter 3.

Introduction
Ninety-nine per cent of the material in the universe is in the plasma state. Physicists call
plasma the fourth state of matter, after solid, liquid and gaseous states. Basically, plasma is
composed of gas molecules that have been dissociated by an input of energy.
Low-temperature gas plasmas are generated when certain gases are stimulated at atmos-
pheric pressure (AP) or relatively low pressure (LP) with pulsed energy, radio-frequency
waves or microwave energy. The plasmas of several different gases such as argon, helium,
oxygen, nitrogen or their mixtures have sporicidal activity (Shintani and MacDonnell, 2011;
Lassen et al., 2003; Rossi and Kylian, 2012). Many modern medical devices are thermo- and
hydro-sensitive. Given the drawbacks and limitations of other low-temperature sterilization
procedures, low temperature gas plasma sterilization could represent a useful alternative.
Model equipment used for gas plasma sterilization is shown in Fig. 2.1 (Shintani et al., 2007).
The first practical application of gas plasma sterilization was developed in 1972 (Ascham
and Menashi, 1972). Since then several kinds of gas plasma applications have been designed
to sterilize the bioburden of various products, and many researchers have studied the sub-
ject as well as the mechanism of gas plasma sterilization. The bioburden defines the type and
number of viable microorganisms in/on a product (ISO 14161, 11138-1).
Low-temperature gas plasmas, used for surface modification and organic cleaning (Fig.
2.2), are ionized gases generated at pressures between 0.1 and 2 torr. These types of plas-
mas work within a vacuum chamber from which atmospheric gases have been evacuated,
typically below 0.1 torr. Low pressure allows for a relatively long free path of accelerated
radicals and metastables. Neutral particles such as radicals and metastables can be produced
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Theoretical Background !

at or near ambient temperatures, and undergo relatively few collisions with molecules at this
temperature. Although both radicals and metastables are neutral compounds, their flight
distances differ significantly. Whereas the flight distance of a radical is ~0.003 cm, that of a
metastable particle is ~144 cm.

Plasma sterilization

There are three traditional states of matter: liquid, gas and solid. Plasma may be considered
the fourth state, in which the molecules of a gas are excited to become plasma when the
gas atoms lose their electrons and generate a highly excited mixture of charged nuclei and
free electrons. A true plasma is actually considered to consist of positively and negatively
charged particles in approximately equal concentrations. Plasma can be generated by the
application of sufficient energy, in the form of heat or an electromagnetic field, to a gas. A
plasma can be subsequently formed by further energy absorption by the gas, which frag-
ments the gas atoms and molecules to produce negative ions, positive ions, electrons, and
other short-lived or long-lived reactive species (Fig. 2.3).

It should be remembered that an atom of any element consists of a central nucleus (made
up of positively charged protons and neutrons) thatis surrounded by negatively charged and
paired electrons, which are organized in defined orbitals, depending on their energy levels.
In this state, each atom is balanced, with an overall neutral charge produced by an equal
number of electrons and protons. As energy is applied to the atoms/molecules in a gas, the
molecules and atoms fragment to produce positive ions (as they now have a higher number
of protons) and free, negatively charged electrons. In some cases, the electrons react with
other atoms, thereby gaining an overall negative charge (negative ions). Further unstable
species are also generated including ozone (in the case of oxygen plasmas; ozone causes a

Process gas in
Vacuum reaction chamber
Excited gas species: o Giow discharge, O
® atorms short wave and
* molecules iong wave UV

e s
* photons h /
» glections ™~ /

SRR

* hae radicals
* matastables

Ground

Process gas out
gasou electrode

RF source T

Figure 2.3 Model of the gas plasma exposure. Reproduced from URL of http://www.astp.
com/plasma/pl_examples.html with permission from AST Products Inc.

7
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serious etching phenomenon) and other free radicals, metastables, photons, UV and VUV. Table 2.1

The free radicals that are formed include the hydroxyl radicals (OH.), NO radicals (NO.), Gas
oxygen metastables (021), or nitrogen metastables. Free radicals are highly reactive in that m
they have unpaired electrons in their outermost orbitals and therefore bind with electrons —_—

from other molecules to produce a chain reaction of electron loss and gain. Therefore, on

exposure to microorganisms, a variety of effects occur, which cause functional damage to functione
cell components (including proteins, lipids, nucleic acids and dipicolinic acid), ultimately sterilizati
resulting in cell death. The role of metastables in spore sterilization will be discussed in Recen
Chapter 4. Furthermore, with the excitation of electrons between atom orbitals, as they pheric (o
return to their natural states, they give off energy (E =hv) in the form of heat or photons, for passage ¢
example, within the UV wavelength range (~100 to 350nm). This also contributes to anti- simply a1
microbial activity as a minor factor. According to experimental results, sterilization effects arcing w.
of UV or VUV on spores are rarely observed, so UV-C is not an efficient contributor to gas including
plasma sterilization (Deng ef al., 2006). When the energy source applied to the gasis turned Althougt
off, the various species rapidly recombine into Jower-energy, stable forms. electroly:
A variety of plasmas can be produced, which are usually named after the gas used to 2013; Re
create them, e.g. oxygen or nitrogen gas plasma. Several gases have been used for plasma Marino, :
generation including oxygen, nitrogen, argon, helium, and a mixture of oxygen and nitrogen In ger
at1/4 (v/v). Most popular is the mixture of oxygen and nitrogen at 1/4 (v/v). Oxygen alone duction
causes significant etching and shrinkage of microorganisms probably due to ozone, as men- aerobic |
tioned above (Kylian et al., 2006). Nitrogen and argon alone do not have significant effects 2007, 2(
on microorganisms, but the major contributors of nitrogen gas plasma are thought to be required
metastables of N, and O,, so the presence of some O, is favourable; thus N,/O, (4/1)is the reductio
most popular gas for sterilization. As discussed above, plasmas are generated by the applica- Tus stearc
tion of heat or electromagnetic radiation. Heat is generally not used because of the very depends
high temperatures and pressures required for the generation of plasmas (e.g. up to 3000°C). with sor
Lower-temperature plasmas are usually produced in a gas under vacuum with the application and app!
of microwaves or high-energy radiofrequency; in some cases atmospheric pressure plasmais Antimic
also used (Shintani et al.,, 2007, 2010), mostly for the purpose of surface modification (Fig. fact that
2.2) as well as gas plasma sterilization (Fig. 2.3). These plasmas are usually generated under Even the
relatively low pressure such as half to one-third pressure at low temperatures (30 to 50°C) faces be
(Shintani et al., 2007, 2010). (~10-2
Althc
that the
Application potentic
Plasmas can be used in sterilization processes (Shintani ef al., 2007, 2010) with potential essentia
applications in liquid waste disposal, water disinfection, and surface and air disinfection. sidered
While presently being considered for use for medical device and medical material sterili- of Gran
zation in healthcare and industrial applications, plasma sterilization is currently not used ionic sp
outside of research settings. The methods used to generate the plasma vary: in some cases, likely cc
plasma is generated using the gas within a given chamber, while in others the plasma can 2011; T
be created in a separate chamber and introduced into the sterilization chamber. The latter et al., 2
method is being used by the NGK Co. Ltd (Nagoya, Japan) to develop its Remote Plasma (us) anc
sterilizer. Plasmas have also been described for the generation of ozone (limited to 0, gas relativel
plasma) and other reactive species from oxygen. Oxygen gas plasma causes significant etch- are not

ing and shrinkage (Lee et al.,, 2006; Rossi and Kylian, 2012), resulting in failure of material/ al., 200«
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Table 2.1 Dissociation energy of several gases
Gas F, H,0, OH N,O o, Co, NO N,
Dissociation energy (eV) 1.66 2.21 4.62 4.93 5.21 5.52 6.50 9.91

functional compatibility. Therefore, oxygen gas plasma is not recommended for gas plasma
sterilization. :

Recent applications have involved plasma production at room temperature and at atmos-
pheric (or slightly negative) pressure by dielectric barrier discharge. This is achieved by the
passage of a gas through a pair of electrodes, which are covered by a dielectric material (or
simply an insulating or non-conductive material like quartz glass plates), which prevents
arcing when a current is applied. In addition to gases, energy can be applied to liquids,
including water, which can also cause similar dissociation of atoms or molecules (Table 2.1).
Although these may not be considered true plasmas, they are similar to the generation of
electrolysed or activated water, which can destroy waterborne microorganisms (Hayes et al.,
2013; Rowan et al., 2008) or VBNC (viable but non-culturable) microorganisms (Brelles-
Marino, 2012; Cooper et al., 2010).

In general, plasmas demonstrate broad-spectrum antimicrobial activity due to the pro-
duction of many reactive species; not surprisingly, bacterial spores (particularly spores from
aerobic bacteria, including those from Bacillus spp. and Geobacillus spp. (Shintani ef al.,
2007, 2010) demonstrate the greatest resistance (Table 2.2), with longer exposure times
required for sterilization (Shintani et al., 2007, 2010). In our case, the D value (decimal
reduction value, time or dose to reduce one log) was approximately 1-1.2 min for Geobacil-
lus stearothermophilus ATCC 7953 (Shintani et al,, 2007, 2010). The potency of the plasma
depends on the vacuum applied and the gas used to generate the plasma. Most of them
with some exception are, however, short-lived, which means they should be generated
and applied close to the surfaces being treated; for these reasons, they are non-penetrating,
Antimicrobial processes of plasmas are generally rapid due to their reactive nature and the
fact that little or no residue remains on surfaces following treatment and simple aeration.
Even though they are reactive, plasmas are not damaging to various metal and plastic sur-
faces because the penetration depth of the reactive species of the plasma is quite shallow
(~10-20nm) (Shintani, et al., 2007).

Although the exact modes of action of plasmas are not yet well understood, it is known
that the reactive species in a typical plasma react with various cell surface molecules and,
potentially, internal proteins, nucleic acids (Brock, 2014; Brun et al, 2012) and other
essential molecules such as dipicolinic acid (Chapter 2). Ions and electrons are not con-
sidered major factors for sterilization because the outer surface of spores, as well as those
of Gram-negative and Gram-positive microorganisms are charged (McDonnell, 2007), so
ionic species are trapped at the outer layer and cannot penetrate into the interior. The most
likely contributors to the sterilization process are metastables, rather than radicals (Popov,
2011; Takamatsu et al., 2014; Guerra et al., 2001; Ono et al., 2009; Yagyu et al., 2009; Bourig
et al., 2007; Vagin et al., 2006; Yu et al., 2006). This is because radicals are quite short-lived
(ps) and have a short flight distance (0.003 cm/ps), in contrast to metastables, which have a
relatively long life period (7 s to 2 s) and a longer flight distance (144 cm/2s). UV and VUV
are not major contributors to gas plasma sterilization based on current research (Deng et
al., 2006).

]
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Table 2.2 Relative resistance to gas plasma exposure

Microorganism

Examples

More resistant

Prions

Bacterial spores
Prozoal oocysts

Helminth eggs

Scrapie, Creutzfeldt-Jakob disease,
chronic wasting disease

Bacillus, Geobacillus, Clostridium
Cryptospordium
Ascaris, Enterobius

Mycobacteria Mycobacterium tuberculosis, M. terrae,
M. chelonae
Small, non-enveloped viruses Poliovirus, parvovirus, papillomaviruses

Protozoal cysts Giardia, Acanthamoeba

Fungal spores Aspergillus, Penicillium
Gram-negative bacteria Pseudomonas, Providencia, Escherichia

Vegetative fungi and algae Aspergillus, Trichophyton, Candida,

Chlamydomonas

Vegetative helminths and protozoa Ascaris, Cryptosporidium, Giardia
Large, non-enveloped viruses Adenoviruses, rotaviruses

Gram-positive bacteria Staphylococcus, Streptococcus,

Enterococcus

Enveloped viruses Human immunodeficiency virus, hepatitis
Less resistant B virus, herpes simplex virus

Reproduced from McDonnell G.E. (2007) Antisepsis, Disinfection, and Sterilization, Types, Action,
and Resistance, ASM Press, NW, Washington DC with permission from ASM Press.

Plasma sterilization can be used with a biological indicator (BI) such as Geobacillus
stearothermophilus ATCC 7953 spores, because the bacterial endospore is the most tolerant
to gas plasma (Table 2.2). Therefore, if spores of the BI are killed, other microorganisms in
the bioburden are also expected to be killed. The order of tolerance to gas plasma exposure
is presented in Table 2.2, Sterilization is defined as complete killing of spores and vegetative
cells, whereas disinfection is defined as death of all vegetative cells but not spores. Therefore,
sterilization is more stringent in terms of killing microorganisms (Shintani and McDonnell,
2011).

Sterilization and material compatibility

Plasma technology has also been considered for disinfection and sterilization of medical
devices. The most favourable aspect of plasma technology is the possibility for simultaneous
surface modification and sterilization in biomedical device fabrication (Figs. 2.2 and 2.3).
Plasma sterilization may be suitable for medical implants and devices that are sensitive to
temperature, radiation and chemicals. Plasma penetration depth is quite shallow at around
~10-20nm; therefore material/functional compatibility can be easily attained together
with a sterility assurance level (SAL) of 10-¢ (Shintani et al., 2007, 2010). This will be dis-
cussed in detail in Chapter 3.
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Conclusion

Gas plasma sterilization was first tested in 1970, so this technology has a relatively short
history. Since 2000, studies of gas plasma have expanded significantly. The most popular
gas plasma equipment is low-temperature non-equilibrium equipment (Lassen ef al., 2006;
Alfa et al., 1996; Crow et al., 1995) using a gas mixture of N, /O, (4/1, v/v). This is because
both a sterility assurance level of 10~° and material/functional compatibility can easily be
attained with this combination. To date, however, the mechanism of gas plasma sterilization
remains unclear; after elucidation of the mechanism, there will be high potential for inno-
vation of the types of appropriate gases and functional conditions to improve gas plasma
sterilization technology.
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Concomitant Achievement of a
Sterility Assurance Level of 107°
with Material and Functional
Compatibility by Gas Plasma
Sterilization

Hideharu Shintani

Abstract

In this chapter, we discuss the importance of attaining a sterility assurance level (SAL) of
107 while maintaining material/functional compatibility. Simultaneous achievement of
both these factors is required in ISO 14161 and for sterilization validation. Because the level
of penetration achieved by gas plasma sterilization is quite shallow, at around 10-20nm
from the surface, the procedure kills only one layer of bioburden but readily maintains
material and functional compatibility. In reality, there is an absence of bioburden that form
multilayer clumps in healthcare products. Thus, gas plasma treatment easily displays mate-
rial/functional compatibility whilst achieving a SAL of 107 due to its low temperature of
operation and shallow penetration.

Introduction

Gas plasma sterilization is popular among sterilization researchers and a small number of
commercial gas plasma sterilizers are available from, for example AST Products Inc. (http://
www.astp.com/plasma-equipment). However, gas plasma sterilization is not popular due
to the narrow space of the sterilization chamber. Sterilization represents the most rigorous
process to eliminate microorganisms (see Table 2.2). Sterilization can kill all types of micro-
organisms including spores and vegetative cells (Sakudo and Shintani, 2011). Spores are the
most tolerant of all microorganisms (see Table 2.2). In addition, according to ISO 14161
and sterilization validation, proper sterilization must attain a sterility assurance level (SAL)
of 1076 with an initial population of 10° CFU (colony-forming units). Reduction from an
initial population down to a SAL of 107 requires a 12 log reduction. The requirement of a
‘6 log reduction’ is not a reduction of an initial population of 10° CFU/ carrier to 10° CFU/
carrier. The correct 6 log reduction required by the authority is from 10° CFU/carrier
(bioburden level) to a SAL of 1076 as described in ISO 14161 and sterilization validation.
For this purpose a straight survivor curve is required. An initial population of 10° CFU/
carrier is a reasonable population expected for the bioburden and a SAL of 107 is specifi-
cally required in ISO 11138-1 and ISO 14161 as well as for sterilization validation. The 6
log reduction required for BI users is the absolute bioburden method in ISO 14161. This
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requirement is not addressed to BI manufacturers in ISO 11138-1. Further details of these Reducti
methods will be discussed in Chapter 13. difficult to

quite shallc

after (uppe
Requirements for the sterilization procedure copy (AFD
The requirements for sterilization validation are provided in ISO 14161 and 11138-1. If depth of ~.
a straight line survivor curve can be experimentally demonstrated for the reduction of an to be appr«
initial population (10 CFU/carrier) to a SAL of 1072, then a SAL of 102 to a SAL of 107 of lym an
can be speculated to be a straight line (Fig. 3.1). This reduction cannot be confirmed experi- even one s
mentally and can only be speculated from the stochastics in ISO 11137-1. A SAL of up to efficiently .
1072 (1/100) can be confirmed experimentally, but a SAL less than 10~ has more chance of the BI (
to have contamination. Therefore exact SALs of less than 1072 remain uncertain and a SAL 109 (Sakuc
of 1079 is actually speculation. This amount is defined as the closest amount to zero based (see Fig. 1
on stochastics, a concept that is explained in ISO 11137-1. Any tailing in the reduction of straight su:
an initial population of 105 CFU/carrier to a SAL of 10° due to clumping of the B is inap- As gas |
propriate (see Fig. 1.1) (curved survivor line; see Fig. 1.3A), and means that the data are not quite safe

valid. The reason why tailing curves are observed and how to avoid them is also explained
in the NOVA book (Sakudo and Shintani, 2011). However, curved survivor lines even for
SALs of 10>~10° can be observed in the papers and books from engineering researchers. All
of these data are invalid.
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Reduction of an initial population of 10®° CFU/carrier down to a SAL of 107 is quite
difficult to attain by gas plasma sterilization because the penetration depth of gas plasma is
quite shallow, ~ 10 to 20 nm (Shintani et al., 2007). Fig. 3.2 shows the polystyrene surface
after (upper) and before (lower) gas plasma exposure as observed by atomic force micros-
copy (AFM). From the upper figure, the polystyrene can be observed to be etched to a
depth of ~10 to 20 nm. From the presented scale the deepest etched depth can be estimated
to be approximately 20 nm. Geobacillus stearothermophilus ATCC 7953 spores have a width
of 1ym and a length of 3um (Fig. 3.3), indicating that gas plasma cannot pass through
even one spore. Therefore, gas plasma can kill only one layer of spores; multilayers are not
efficiently killed because of the shallow penetration depth. The presence of multiple layers
of the BI (clumping, see Fig. 1.1) is the reason why survival curves tail off before a SAL of
10° (Sakudo and Shintani, 2011). Multi-layers, known as clumping among microbiologists
(see Fig. 1.1) and as stacking among engineering researchers, must be avoided to obtain a
straight survival curve up to a SAL of 107, not a SAL of 10° (Fig. 3.3).

As gas plasma sterilization has a very shallow penetration depth, products are generally
quite safe from damage, indicating that simultaneous achievement of a SAL of 107 and

Figure 3.2 Surface analysis of atomic force microscopy (AFM) before and after gas plasma
exposure to polystyrene (PS). Upper panel is after treatment for 7 min and lower panel is before
treatment (control). Reproduced from Shintani et al. (2007).
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material/functional compatibility can be easily obtained compared with existing steriliza- of scalpel
tion procedures such as gamma-ray irradiation, autoclaving, dry heating, hydrogen peroxide and after
gas sterilization, ethylene oxide gas sterilization, etc. (see Box 3.1). damage 3
We have data to indicate that gas plasma sterilization does not cause serious damage to results, w
many materials. Polystyrene (PS) was sterilized by nitrogen gas plasma and the amounts of ous achie
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Box 3.1 List of publications citing that gas plasma sterilization simultaneously achieves 1996; M
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after nitr

Shintani, 1995; Bathina et al., 1998; Feldman and Hui, 2014; Wod and Getty; Penna
et al., 1999; Du Pont; Rao, 2011; Kunishima, 2005; Willie et al., 2004; Kim et al., 2004;
Brown et al., 2002; Fisher et al., 1997: Volny et al., 2007; Kwok et al., 2004; Williams
et al., 2004; Olde et al., 2003; Lin et al., 1995; Courtney et al., 1978; Wood and Getty;
Hauser et al., 2011; Deilmann et al., 2008; Hauser et al., 2008; Simmons et al., 2006;
Grabow et al., 2005; Charlebois et al., 2003; Trostle et al., 2002; McNulty et al., 2002; i
Ferreira et al., 2001; Liao et al., 2001; Duffy et al., 2000; Reeves et al., 2000; Lewis and st
Nyman, 1999; Hury et al., 1998; Collier et al., 1996; Hesby et al., 1997; Baier et al., 1992: o :
Haertel et al., 2013; Aerts et al., 2013; Isbary et al., 2013; Lee et al., 2013; Benetoli et al., w .
2012; Ke et al., 2011; Rederstoff et al., 2011; Magureanu et al., 2011; Yang et al., 2010;

Yuan et al., 2010; Rainer et al., 2010; Torres et al., 2010: Guo et al., 2008; Naseem et al.,

2004; Rederstorff et al., 2011; Zhang, 2014; Wittenburg et al., 2014; Delgado et al., 2014; 'f =t
Vetten et al., 2014; Pokorny et al., 2012; Popoola et al., 2010; Justan et al., 2010; Kinnari 501 :
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al., 2006; Muranyl et al., 2010; Lerouge et al., 2000; MacDonald et al., 2012; Sheen et al., g
2008; Kvam et al., 2012; Whittaker et al., 2004; Yuen et al., 2011: Gatineau et al., 2012;
Gao et al., 2006; Zhang et al., 2004; Yet-Pole et al., 2004.
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Table 3.1 Analysis of exhaust gas from polystyrene (PS) treated with nitrogen gas plasma

Procedure Before and after treatment to PS  Detected gases (ppm)

Low-pressure  Sort of gases cot NOxz  HCN® O/ N,0°

gas plasma Before <2 <05 ND ND  ND
After 3.9 1.1 <0.1 <005 26

'UV-absorbance method. 5GC-MS.

2Chemical luminescence method. ND, not detected, indicating less than limit of

3Pyrazolone light absorption method. detection (LOD)

40zone detector. Reproduced from Shintani et al. (2015).

after gas plasma exposure to PS indicated that no significant change occurred (for example
no oxidation at 1670/cm, which represents C=0 functional groups) after treatment for 7
min (Fig. 3.4). In addition, we have results of nitrogen gas plasma exposure and autoclaving
of scalpels (Figs. 3.5 and 3.6). These results indicate that the scalpel was unchanged before
and after nitrogen gas plasma treatment for 8 min and 40 min (Fig. 3.5), but significant
damage was observed after autoclaving for 15 min at 121.1°C (Fig. 3.6). Based on these
results, we conclude that nitrogen gas plasma sterilization can successfully attain simultane-
ous achievement of a SAL of 1076 and material and functional compatibility (Shintani et al.,
2007, Williams et al., 2004; Volny et al., 2007; Lin and Cooper, 1995; Kwok et al., 2004; Kim
et al.,, 2004; Courtney et al., 1978).

In addition, we carried out a tensile and elongation strength test of Latex rubber before
and after nitrogen gas plasma exposure (Table 3.2) (Shintani et al., 2007) and (Chin et
al., 2013; Strickler et al,, 2010; Lin et al., 1991; Gentis et al., 2013; DeHoff and Anusavics,
2009; Fisher and Stawarczyk, 2007; Kunze et al., 2003; Niederer et al., 1995; Collier et al.,
1996; Mishra et al., 2003; Brown et al., 2002) and leaching tests of latex rubber before and
after nitrogen gas plasma exposure (Table 3.3) (Shintani et al., 2007) and (Vollpracht and
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Figure 3.4 FT-IR data of PS before and after gas plasma exposure for 7 min treatment. AP,
atmospheric pressure; LP, low pressure. Reproduced from Shintani et al. (2007).
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. . Table32"
- after nitrogs
Sample
No treatmer
(a0)
|
i
(b0) Plasma, 40
Figure 3.5 SEM observation of a scalpel before and after gas plasma exposure. (a0) is the
control and (al) is after 8 min treatment. (b1) is the control and (b1) is after 40 min exposure.
Reproduced from Shintani et al. (2007).
Reproduce:
Table 3.3
Sample
No treatme
Figure 3.6 SEM observation of a scalpel before and after autoclave treatment for 15 min at Plasma. 40
. 121.1°C. c1 is after treatment and c0 is the control. exposu;’e
Reproduced from Shintani et al. (2007). e
Reproduce
Brameshuber, 2010; Bouvet et al., 2007; van der Sloot et al., 2001). Statistical analysis of
data in Table 3.2 using the Student t-test (paired t-test using StatView®) indicates that there Ifgast
was no significant difference. Statistical analysis of data in Table 3.3 cannot be done, but we the preser
can speculate that there is no significant difference. by the au
order to a
mercial g
Conclusion
As mentioned above, gas plasma sterilization can easily result in a SAL of 10~ and material/ Acknow
functional compatibility. This is because the penetration depth of the sterilization factors This chap
is only 10-20nm below the surface, which can kill scattered bioburden in a single layer on Affairs 4:]
the products. Both achievement of a SAL of 107 and material/functional compatibility can (Hidehar
be successfully achieved as required in ISO 14161 and sterilization validation by BI users. License (
In many cases the existing sterilization procedures fail to attain material and functional reproduc
compatibility; therefore, compatibility is not strictly applied to the existing sterilization
procedures. If strictly applied, no compliant sterilization procedures would be currently Referen
available. Therefore, new sterilization procedures that meet all requirements to attain a SAL Aerts{ R.,1
P asma

of 107% and material/functional compatibility must be developed.
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Table 3.2 Tensile test, elongation test and 300% elongation test of Latex rubber before and
after nitrogen gas plasma exposure

Max. tensile Max. elongation  300% Elongation

Sample No. test (N) test (%) tensile test (N)
No treatment 1 3.58 656.0 1.32

2 3.83 684.5 1.09

3 3.73 781.5 1.35

4 3.73 695.0 1.33

5 3.70 678.0 1.30

Ave 3.71 699.0 1.28
Plasma, 40 min treatment 1 3.30 685.5 1.24

2 3.45 694.5 1.25

3 3.98 788.0 1.15

4 3.80 626.5 1.43

5 4.73 812.5 1.32

Ave 3.85 721.4 1.08

Reproduced from Shintani et a/. (2015).

Table 3.3 Leaching test of Latex rubber before and after of nitrogen gas plasma exposure

Potassium Evaporation
Sample Heavy metal Arsenic (As) UV absorbance permanganate residue
No treatment Less than Less than 220 nm: 0.3447 8.90 pg/ml 2.0mg
2.0 ppm 2.0 ppm 350 nm: 0.0562
Plasma, 40 min Less than Less than 220 nm: 0.3498 9.22 pg/mi 3.7 mg
exposure 2.0 ppm 2.0 ppm 350 nm: 0.0479

Reproduced from Shintani et al. (2015).

If gas plasma sterilization procedures were applied to healthcare materials in the future,
the present exceptions to the existing sterilization procedures would no longer be approved
by the authorities. There is an urgent need to improve existing sterilization procedures in
order to attain a SAL of 107% and material and functional compatibility. Therefore, a com-
mercial gas plasma sterilizer is needed as soon as possible.
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Abstract

In this chapter, we will introduce the advanced technology for remote sterilization by expo-
sure to nitrogen gas plasma, which is generated by a pulsed power source. Sterilization was
best achieved using nitrogen gas plasma at a relative humidity (RH) of 0.5%. Furthermore,
sterilization efficiency was directly correlated with the levels of OONO-~ (peroxynitrite
anion radical). These results suggest that OONO-~ is a major factor in the case of remote
sterilization by nitrogen gas plasma.

Introduction

Several papers have been published on gas plasma sterilization (Sakudo and Shintani, 2012;
Shintani et al., 2007, 2010). The definition of sterilization can be found in Sakudo and
Shintani (2012). The advantages of gas plasma are that sterilization with a sterility assur-
ance level (SAL) of 1076 and material/functional compatibility can be attained without any
difficulty. This is because the penetration depth of gas plasma sterilization is quite shallow
(10-20 nm; Shintani et al., 2007) and therefore only one layer of bioburden can be sterilized.
The bioburden represents the type and number of viable microorganisms existing in/on
products. Most of the bioburden exists as one layer; therefore, deeper penetration capability
is unnecessary for efficient sterilization.

In contrast, existing sterilization procedures including gamma-ray irradiation steriliza-
tion, electron-beam sterilization, moist heat sterilization, dry heat sterilization, ethylene
oxide gas sterilization, hydrogen peroxide gas sterilization and so on, have the ability to
penetrate deeper. Therefore, materials are easily sterilized using these methods and a SAL
of 107 can be attained; however, the sterilized products are useless due to degradation of
the product material during the sterilization process, a phenomenon called failure to attain
material/functional compatibility (Shintani, 1995, 2014). Good manufacturing practice
(GMP) and sterilization guidelines require simultaneous attainment of both a SAL of 107
and material/functional compatibility, but this requirement is difficult to attain with the
existing sterilization procedures. Therefore, sterilization procedures using stable gases that
are safe to handle and that have shallow penetration depths are needed. As described previ-
ously, gas plasma sterilization has the characteristics necessary to meet these requirements
(Sakudo and Shintani, 2012; Shintani et al., 2007,2010).
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Table 4.1 Brief description of experimental conditions

Types of gases N,, N,+H,0

Flow rate 2 {/min

Pressure Atmosphere (1 atm)
Distance between reactor and treatment area 100 mm constant
Temperature of hotplate 55-75°C

Humidity 0.0-5.0% RH
Electric discharge of voltage 13-15 kV

Electric discharge of current 7-12 A

Repeated frequency 1 kHz

The relative humidity (RH) was measured at the upper and lower sites of the reactor with
BKPRECISION Ltd., 725 digital temperature/humidity sensors. Exhaust NOx gases were
determined using a Shimadzu NOA-7000 analyser and exhaust ozone gas was determined by
using an EG-700EIll ozone monitor from Ebara Ltd. Hot plate

For the studies introduced here, we used a remote type of nitrogen gas plasma steriliza-
tion procedure using a pulsed power supply of static induction thyristor (SI'Thy) (Shimizu,
2010; Uyama, 2015; Shintani et al., 2015). Several factors associated with the sterilization
procedure were determined, and the main factors associated with sterilization were identi-
fied (Table 4.1). In addition, appropriate sterilization conditions were identified and are
reported herein.

Efficiency of atmospheric pressure nitrogen gas remote plasma
sterilization

Samples to be sterilized, including a biological indicator (BI), were placed on a hotplate
(Figs. 4.1-4.4). The distance between the reactor and hotplate was kept constant at 100 mm
(Fig. 4.1). The temperature of the hotplate was varied from 55 to 75°C (Fig. 4.5).

Figure 4.
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Figure 4.1 Schema of experimental system. The schema of the experimental system is shown.
Remote gas plasma was utilized. The experimental system consists mainly ofa humidity control
device, plasma producer, and exhaust gas analyser. MFC stands for mass flow controiler. Figure 4.
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. . B
| H,0 inlet | H,O inlet | H,0 inlet

Figure 4.5 Relationship between sterilization efficiency and hotplate temperature. Relationship
between sterilization efficiency and hotplate temperature is shown. It was determined that the
higher the temperature, the greater the sterilization efficiency. It is seen that sterilization can Fi 4.6
be completed in 240 min, 150 min and 120 min at 55°C, 65°C and 75°C, respectively. These fgure 2.

results indicate that 75°C is the best temperature for sterilization because an increase of 20°C
from 55°C to 75°C resulted in a sterilization time that was half as long, and it is expected that

the target materials including the Bl are tolerant to this temperature. 75°C was found to be the Atlocation
optimal temperature. produced |
N metastal

water vapc

Nitrogen gas was chosen for use in these sterilization studies because of its higher dis- (BI) and re
sociation energy, which makes it relatively stable compared with other gases, and therefore of water va
it is inert and safe to handle (Table 4.2). Sterilize
The need for humidity in gas plasma sterilization has been reported (Friedman and _ ATCC795
Friedman, 2013; Tamazawa et al., 2015). A supply of water vapour was introduced at three Lab. The 1
locations as shown in Figs. 4.4 and 4.6. The site of water vapour introduction was varied negative m
because water vapour can play a role in generating various reactive oxygen species that may fraction ne
function in the sterilization process. Location (i) was at the upper part of the reactor, location liquid med
(ii) was just below the reactor, and location (iii) was just before the site of sample treatment. Fig. 4.7).\

Table 4.2 Dissociation energy of several types of gases

Gas Dissociation energy (eV) ‘
N, 9.91 \
0, 5.21 ;
H,0 5.11 Z
NO 6.50
SO, 5.60
N,O 493
CO, 5.52
0, 1.05 Figure 4.7
H,0, 2.21 of the biol

unchangec
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Figure 4.6 Photograph showing the differing location of water vapour supply.

Atlocation (i), NO radicals, which are actively involved in the sterilization process, may be
produced (Shintani et al., 2014; Shintani, 2015). In location (ii), it can be speculated that
N metastables or other reactive oxygen species (ROS) may be generated by reactions with
water vapour. In location (iii), short-lived OH radical may attack the biological indicator
(BI) and result in its sterilization. The actual experimental set up with the different positions
of water vapour introduction is shown in Fig. 4.6.

Sterilization evaluation was confirmed by using a BI of Geobacillus stearothermophilus
ATCC 7953 with 10% CFU (colony-forming unit)/carrier, which was obtained from MESA
Lab. The D value (decimal reduction value) was obtained by two methods, the fraction
negative method and survivor curve method (ISO 14161; ISO 11138-1). In the case of the
fraction negative method, the BI was incubated using SCDB (soybean casein digest broth)
liquid medium at $8°C for 2 days. The result was confirmed using a chemical indicator (Cl;
Fig. 4.7). When the BI survived, the colour changed to yellow, whereas when sterilization

sz
Optical fiber Quartz
\ 71 window [ l

\
\

\

Spectrometer

Figure 4.7 Colour change of chemical indicator (Cl). The tube on the left indicates survival
of the biological indicator (Bl) (acid produced) and that on the right is sterilized (colour is
unchanged).
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was successful, the colour remained unchanged (purple). This is due to the production of
organic acids (mostly citric acid) from the tricarboxylic acid (TCA) cycle (Fig. 4.7). To
generate the survivor curve, we used SCDA (soybean casein digest agar) solid medium.
Ten-fold serial dilutions using SCDB were carried to achieve final plate counts of 30-300
CEU/plate as required in ISO 14161. Spores were retrieved from the BI carrier by using
the procedures described in ISO 11737-1. According to ISO 11 138-1, the D value must be
obtained using both the fraction negative method and the survivor curve method, so we
carried out both methods following the ISO 11138-1 requirement.

The D value was determined by the Stumbo-~Murphy-Cochran procedure, one of the
fraction negative methods (ISO 14161). The results are summarized in Table 4.3. The D
value was the lowest at a relative humidity (RH) of 0.5% (~ 8.7 min). The others were
approximately 10 min, indicating that a RH of 0.5% resulted in the most efficient steriliza-

tion. D value was determined using the survival curve method. The D value was determined Figure 4.9
under the following conditions: hotplate temperature, 75°C, RH, 0.5% or 0%, and water supply loc
. . o found to be
vapour supply location (i) or (iii) as shown in Figs. 4.8 and 4.9.
From data in Fig. 4.8, it can be concluded that the use of a RH of 0.5% was superior
to 0% RH, as the D was approximately 10 min. Results presented in Fig. 4.9 indicate that
water vapour supply location (i) was superior to location (iii), and the D value was approxi- method. T
mately 10 min. These data are consistent with the D values obtained by the fraction negative line witha
Surface
_ Hitachi te
Table 4.3 Determination of D value (min) by using fraction negative method, Stumbo-Murphy- the untrea
Cochran Procedure and sterilization efficiency (%) the surface
Non viable Sterilization ness did nv
RH (%) sheets Viable sheets  Total sheets D value (min)  efficiency (%) that roug}
0.0 1 11 12 10.71 8.3 that SEM
0.5 8 1 9 8.66 88.9 sterilizatic
5.0 3 6 9 10.07 33.3 plasma (8.
The treatment period was 60 min. Initial population was 108 CFU/carrier.
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Figure 4.8 Relationship between treatment time and colony-forming units at water vapour the middh
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Figure 4.9 Relationship between exposure time and colony-forming unit at water vapour
supply locations (i} and (i), with a RH of 0.5% and a temperature of 75°C. Location (i) was
found to be the most appropriate.

method. The D value from the survivor curve method was determined using a regression
line with a coefficient of correlation of greater than 0.8 as required in ISO 11138-1.

Surfaces of spores were observed by using scanning electron microscopy (SEM; S-5500
Hitachi technologies Ltd). Fig. 4.10 shows the SEM observation of spores. Compared with
the untreated control (left), sterilized spores showed no shrinkage, but some roughness of
the surface was observed for spores that were treated for 30 min (middle). However, rough-
ness did not always increase with increasing treatment time up to 90 min (right), indicating
that roughness is a temporary rather than permanent phenomenon. It therefore appears
that SEM observation does not provide any useful information regarding the success of the
sterilization process. Nitrogen gas plasma does not cause any etching in contrast to O, gas
plasma (Shintani ef al., 2010; Tamazawa et al., 2015).

100
g 80
8
[0
c 60
8
8 40
= -8 (i)
) ..
& 20 2~ (ii)
- (iii)
0 L

90 120
Exposure time [min]

Figure 4.10 SEM observation of control and treated spores. The upper panel is the control,
the middle panel is after a 30 min treatment and the lower panel is after a 90 min treatment.
Roughness did not always increase with increasing treated time, indicating roughness is not
always a permanent factor.
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Clarification of sterilization major factors in the remote nitrogen

gas plasma sterilization system

Several reactive oxygen species (ROSs) were analysed by using emission spectrophotomet-
ric analysers from Maya 2000 Pro (Ocean Optics Ltd) (Fig. 4.11). A quartz window was
incorporated into the reactor and analyses were conducted under the following conditions.
The determination wavelength was 200-650 nm, grating was 600 lines /mm, entrance slit
width was 10 um, exposure time was 100ms and analyses were repeated five times.

In Fig. 4.12, the emission spectrum at a RH of 0.5% is shown. By using the equipment
shown in Fig. 4.11, the emission spectrum can be obtained. NO radicals, N, second posi-
tives and N, * were detected. However, no OH radicals were detected at 310 nm, indicating
that OH radicals are not major contributors to nitrogen gas plasma sterilization.

A wavelength of 258.55 nm was used for the detection of NO radicals as shown in Fig.
4.12. In Fig. 4.13, the relationship between emission intensity at 258.55nm and relative
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90 min

Figure 4.13 Relationship between emission intensity at 258.55nm (NO radical formation) and
relative humidity (RH).

humidity is presented. As shown in Table 4.3, sterilization efficiency was optimal at a RH of
0.5%, indicating that the NO radical itself does not function as a sterilization factor because
results in Fig. 4.13 do not indicate that 0.5% RH was optimal. In addition, 258.55nm is
in the UV-C range and UV-C is thought to be effective for sterilization of microorganisms
by causing thymine dimer formation. However, no role for UV-C in sterilization could be
demonstrated in previous studies using E. coli and Bacillus atrophaeus ATCC 9372 (Liet al.,
2013; Deng et al., 2006).

Production of one type of ROS, hydrogen peroxide (H,0, ), has been reported by nitro-
gen gas plasma sterilization (Maeda et al., 2015; Sakudo et al.,, 2013, 2014), so we measured
H,0, by using a chemical indicator (CI). The CI for H,O, analysis was from Quantofix
Peroxide 25 (Macherey-Nagel Ltd) and the analysis range was 0-25 ug/ml. H,O, forma-
tion was analysed using a CI from Macherey-Nagel Ltd, and the relationship between H,0,
concentration and humidity is presented in Fig. 4.14. As shown in Table 4.3, sterilization
efficiency was optimal at a RH of 0.5%, indicating that H,0, or OH radicals from H,0, do
not correlate with the RH tendency; therefore H,O, or OH radicals do not appear to be
major contributors in nitrogen gas plasma sterilization.

Superoxide anion radicals (O,-") were speculated to be produced at the reactor site and
reach the treatment location as shown in Fig. 4.15. NO- and O,.~ were also speculated to be
produced even when the water vapour was introduced at location 3, the lowest part in Fig.
4.4 because sterilization was successful at this location.

Measurement of O,.~ was not successful; therefore, its effect on gas plasma sterilization
remains uncertain, but it can be speculated that O, supports the production of peroxyni-
trite anion radicals (ONOO,."), as shown in Fig. 4.16.
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OH radicals may be formed by the reaction shown in Fig. 4.16 and/or from H,O,. How-
ever, as shown in Fig. 4.12 and mentioned in section of 8, OH radicals were not detected
and therefore OH radicals do not appear to be major contributors to nitrogen gas plasma
sterilization.

Peroxynitrite anion radicals (ONOO, ") can be formed from NO radicals + superoxide
anion radicals (O,-) (Fig. 4.16; Nova and Parola, 2008). The reaction in Fig. 4.16 will
occur just at the upper layer of bacteria (Fig. 4.17), indicating that NO radicals and O~
migrate from the reactor site to the treatment site and react as shown in Fig. 4.16 to produce
OONO,".

Peroxynitrite anion radicals were detected by using aminophenyl fluorescein (APF) rea-
gentas shown in Fig. 4.18 (Setsukina et al., 2003). The relationship between the peroxynitrite
anion radical (ONOO, ") concentration and relative humidity is presented in Fig. 4.19. As
shown in Table 4.3, sterilization efficiency was optimal at a RH of 0.5%, indicating that the
peroxynitrite anion radical concentration correlates with the RH level. Based on this finding
it can be speculated that peroxynitrite anion radicals function as a major sterilization factor
in nitrogen gas plasma sterilization. In addition, please refer to the footnote of Fig. 4.18 for
further clarification of ONOO, -~ as a major sterilization factor.

Relationship between sterilization efficiency and water vapour supply location is shown
in Fig. 4.20, water vapour supply locations (i) and (iii) in Fig. 4.4 were superior to that of (ii)

_l N,, H,0, 0,

I ! > No N*a NZ*’ N?_(A)’
i - N,*, NO

Reactor B S -OH, H,0,

» 0,0, -0, O,

— > NO, -ONOO-
S o > -OH, H,0,
> .02~3 03

Figure 4.17 The series of reaction that produce HO-, O,~, NO- and ONOO-~ on the surface of
bacteria.

NO + -0, — ONOO- + H* —-ONOOH — NO;

‘ l
Direct oxidation ‘OH +-NO:

Figure 4.18 Peroxynitrite anion radical (ONOO-) detection using aminophenyl fluorescein
{APF). X is NH for APF and O for HPF (hydroxyphenyl fluorescein). hROS is a highly reactive
oxygen species. APF is specific to OH radical and ONOO-~ and HPF is specific to OH radical.
HPF does not detect OH radical, which indicates that the APF intensity is mostly due to ONOO--
formation. When ONOO-~ combines with APF (the left reagent, X=NH), fluorescein compounds
are produced at an excitation wavelength of 490nm and emission wavelength of 515nm.
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Figure 4.19 Relationship between fluorescence intensity and relative humidity (RH) for APF
and HPF in Fig. 4.18. HPF does not detect significantly -OH, indicating that the intensity of APF
may be due to ONOO- and the tendency of the ONOO:- - produced coincides with that of RH,
which indicates the optimum RH is 0.5%.

O~ OO
hROS - O
COO_ X=0: HPF
X=NH: APF
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almost non-fluorescent

Figure 4.20 Relationship between sterilization efficiency and water vapour supply portion.
Location (i) was found to be the most appropriate.

with respect to sterilization efficiency. The reason (ii) in Fig. 4.4 was inferior to the others
was likely due to N metastables or OH radicals being inactivated before reaching the BI
target. Location (iii) in Fig. 4.4 represents the shortest distance between the water vapour
supply and the site of sterilization, whereas location (i) in Fig. 4.4 was the most remote, but
the abundantly produced NO radicals are the precursors of OONO,~ (peroxynitrite anion
radicals), which are the real sterilization factors described later. Measurement of NO radicals
was conducted using Figs. 4.11 and 4.12. NO radical detection using CI was also reported
by Shintani et al. (2014). Additional results supported the conclusion that water vapour
supply location (i), rather than location (iii) resulted in the best sterilization efficiency.

The relationship between sterilization efficiency and relative humidity combined with
several ROSs is presented in Fig. 4.21. The results indicate that sterilization efficiency coin-
cides with the tendency of peroxynitrite anion radical (ONOO,") formation; therefore,
peroxynitrite anion radicals (ONOO,-") are thought to be the major factor of nitrogen gas
plasma sterilization. Other factors such as NO radicals, H,0,, OH radicals or O,-~ do not
coincide with the% RH (Figs. 4.12-4.14). Peroxynitrite anion radicals (ONOO,") react
with tyrosine, causing nitration at the p site and with DNA bases, especially guanine, caus-
ing nitration (-NO,) and hydroxylation (-OH), which results in transcription failure.
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Figure 4.21 Relationship between sterilization efficiency and relative humidity (RH) for NO
radical, H,0, or ONOO-~. ONOO-~ coincides with sterilization efficiency.

Conclusion

The experiments reported here were conducted to identify the nitrogen gas plasma steriliza-
tion factor(s) and the appropriate sterilization conditions. By varying hotplate temperature,
RH and water vapour supply location, sterilization efficiency was confirmed. In addition,
SEM observation of spore surfaces, emission spectrophotometric analysis, and determina-
tion and evaluation of peroxynitrite anion radicals (ONOO.~) were conducted to determine
which ROSs contribute to nitrogen gas plasma sterilization.

The sterilization times at 55°C, 65°C and 75°C were 240 min, 150 min, and 120 min,
respectively, indicating that at higher hotplate temperatures, the sterilization periods were
shorter. Increasing the temperature by 20°C reduced the sterilization period by half.

The sterilization efficiency was improved by using a combination of water vapour and
nitrogen gas. Relative humidity (RH) was changed from 0.0% RH, 0.5% RH and 5% RH and
the D values under these conditions were 10.71 min, 8.66 min and 10.07 min, respectively,
indicating that the optimum RH is 0.5%. In order to identify the sterilization factors, the
water vapour supply location was varied. The results indicate that the active species were rela-
tively long-lived because the most efficient location was the most remote from the reactor.

SEM observation indicated that there was no significant difference in the appearance of
control and treated spores, and no etching occurred. Treated spores seemed to have increased
roughness compared with control spores, but this roughness did not always increase with
increasing sterilization time, so roughness is not always an indication of sterilization, The
reason has not been clarified, so no ROSs can be confirmed from SEM observation

By attaching a quartz window to the reactor, it was possible to carry out emission spec-
trophotometric analysis. Based on the emission spectrum at a RH of 0.5%, NO radicals, N,
second positives and N, * were detected (Fig. 4.12). In this experiment, NO radicals, which
are detected at 258.55nm in the UV-C range, increased with increasing relative humidity
(Fig. 4.13). This indicates that the tendency of NO radical formation does not coincide with
that of the sterilization tendency as shown in Fig. 4.21. This result indicates that NO radicals
do not participate directly as a major factor in nitrogen gas plasma sterilization.
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Figure 4.22 Relationship between sterilization efficiency and relative humidity (RH). 0.5% RH jﬁzggen
was found to be the optimal condition. The optimum relative humidity (RH) was determined. Naovo, B, ar
A RH of 0.5% was the most appropriate for sterilization. This result has been confirmed in Fibroger
another experiments with consistent results. Szkudo, A.,
inducing
ArticleI
ROSs such as NO radicals, H,0,, OH radicals, O,~ (superoxide anion radicals) or mﬁﬂ;i%ﬁ;
ONOO,~ (peroxynitrite anion radicals) (Fig. 4.21) as well as NOx and ozone were com- Sakudo, A.,
pared for their contribution to sterilization. NOx and ozone were determined and their Mechan
amounts were less than 0.6 ppm and 0.04 ppm, respectively. Since the amounts generated Saséﬂdnai'
were so low, it can be concluded that these ROSs do not contribute to nitrogen gas plasma B‘;;fecsi
sterilization. The RH tendency coincided with that of OONO,~ (Figs. 4.19 and 421); Shimizu, N.
therefore, we conclude that OONO,:~ may be the major sterilization factor in nitrogen gas its Appl
plasma sterilization. _ Shintani, H
Based on the experimental conditions for nitrogen gas plasma sterilization, the water Shi;}tl:ri?g
vapour supply position was best at location (i) (furthest from the reactor; Fig. 4.4) and the steriliza
humidity was optimal at 0.5% RH (Fig. 4.22). Hotplate temperature was optimal at 75°C Shintani, E
(Fig. 4.5). Together these results indicate that higher temperature and optimum RH at 0.5% _ Method
were the best when using position (i) for the water vapour supply (Figs. 4.8, 4.9 and 4.20). bmr{;?:t’i‘:
All results support the concluding data summarized in Fig. 4.21. Biocont
In this chapter, we introduce our recent studies on nitrogen gas plasma for remote steri- Shintani, H
lization and show the original description of ONOO, -~ (peroxynitrite anion radical). Then, ~and me:
we concluded that ONOO,~ is the major factor in nitrogen gas plasma sterilization. In con- Shf:;?;}:
trast to ONOO,-~ (Figs. 4.19 and 4.21), other ROSs do not have identical tendencies with Shintani, F
respect to RH (Figs. 4.13,4.14 and 4.22) and only ONOO,-~ presents an identical tendency atmosp
to the RH. Therefore, ONOO,~ can be defined as the major sterilization factor in nitrogen . a_\’f:;ta?/iz.
gas plasma sterilization. plasma]
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Current Progress in the
Inactivation of Endotoxin and
Lipid A by Exposure to Nitrogen
Gas Plasma

Hideharu Shintani

Abstract

Nitrogen gas plasma treatment has sporicidal activity as well as the ability to inactivate
endotoxins and lipid A. The mechanism of nitrogen gas plasma sterilization may include
synergistic effects involving free radicals (e.g. OH, NO or OONO radicals) and metasta-
ble species (i.e. metastable states of N, or O,). Exposure to nitrogen gas plasma caused no
discernible deterioration in the functional compatibility of various materials under investi-
gation. Based on these findings, nitrogen gas plasma sterilization is a promising method for
the sterilization of medical devices.

Introduction

Recent searches of the primary literature and internet using the keywords endotoxin, gas
plasma, inactivation or depyrogenation resulted in only a few matching articles, indicating
that studies of endotoxin inactivation/depyrogenation using gas plasma are very limited
(Shintani et al., 2007, 2010; Fujimori and Arkawa, 1998; Vetten et al., 2014; Tessarolo et
al., 2006; Keudell et al., 2010). However, the degree of endotoxin inactivation by Sterad®
was reported to be approximately a 1-log reduction (Hosobuchi and Tanamoto, 1999;
Tamazawa and Hosobuchi, 2004). Our method of endotoxin inactivation involved the use
of nitrogen gas plasma exposure. In this study, nitrogen gas plasma treatment resulted in
an endotoxin reduction of more than a 5 logs in 30 min (Fig. 5.1; Shintani et al., 2007).
These experimental findings indicate that the performance characteristics of nitrogen gas
plasma are superior to those of Sterad®, which has been reported to use hydrogen peroxide
gas plasma. However, Sterad® is not a true hydrogen peroxide gas plasma sterilizer due to the
large chamber size (100-1501) of Sterad® (Shintani ef al., 2007; Shintani, 2012).

Inactivation of endotoxin

As shown in Fig, 5.1, at higher temperatures, a greater degree of endotoxin inactivation was
obtained. Since the degree of inactivation was dependent on temperature, the inactivation
follows the Arrhenius equation. Inactivation of endotoxins was confirmed from the results
of Limulus ES-II test Wako and Toxinometer ET-2000/] System, Wako. Endotoxins were
from LPS (lipopolysaccharide) of E. coli 0111 (Fig. 5.2). LPS was evenly inoculated onto
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Table 5.1 XPS result for PS (polystyrene)

Sample C (%) O (%) N (%) Si (%)
£3 (before treatment) 98.7 1.3
23 (nitrogen gas plasma treatment) 82.9 14.2 2.2 0.7

Condition of nitrogen gas plasma treatment: 1/2 atmospheric pressure, 60°C, 6 min.
Seproduced from Shintani et al. (2007).

Table 5.2 Analysis of the exhaust gas from PS (polystylene) treated with nitrogen gas plasma

Before or after Cco! NOx2 HCN? 0,4 N,0°
Disposition treatment with PS (V/v, ppm)  (V/v, ppm)  (V/v, ppm)  {(v/v, ppm) (V/v, ppm)
Low Before <2 <0.5 ND ND ND
pressure
Low After 3.9 1.1 <0.1 <0.05 2.6
pressure
“JV-absorbance spectroscopy. 5GC-MS.

ND, not detected.
Reproduced from Shintani et a/. (2007).

ZChemical luminescence method.
*Piasoron light absorption method.
*Ozone detector.

may fail to be maintained with these procedures. In contrast, treatment with nitrogen gas
plasma resulted in more than a 5 log reduction of endotoxin in ~20-30 min while simultane-
cusly maintaining material/functional compatibility. These findings indicate that nitrogen
gas plasma treatment is superior to the conventional procedures of endotoxin inactivation
{Sehulster, 2012).

Mechanism of endotoxin inactivation using lipid A
The mechanism of endotoxin inactivation was studied by using lipid A and HPLC-MS-
MS (high-performance liquid chromatography-mass spectrometry—mass spectrometry).
Synthesized lipid A from Peptide Institute, Inc. (Osaka, Japan) was used to examine the
endotoxin inactivation mechanism. This is because lipid A contains the active site of endo-
toxin (Brandenburg et al., 2001; Tzeng et al.,, 2002; Hung, ef al., 2014; Chang ef al., 2014;
Poon, 2011; Aussel et al., 2000; Zarrouk et al., 1997; Brandtzaeg et al., 1989; Kedia et al.,
2014). The chemical structures of endotoxin and lipid A from E. coli are presented in Figs.
5.2 and 5.3, respectively. Combined chemical structure is shown in Fig. 5.4.

In Fig. 5.5, the M-1 peak (negative peak) was observed to be 1797 m/z and represents
the mother peak of lipid A (Chalabaev et al., 2014). In addition, peaks at 209, 247, 297,

311, 325, 339, 4185, 429, 502, 603, 632, 645, 660, 673 and 770 m/z were observed in the

non-treated sample, which was dissolved in DMSO (Fig. 5.5a). However, in the sample
treated by nitrogen gas plasma (Fig. 5.5b), these peaks were absent, and, moreover, lower
molecular weight peaks decreased significantly. Only very small MS peaks were present in
the MS spectrum of the plasma-treated sample. This indicates that cleavage at several posi-
tions in lipid A, such as the acid amide bond or ester bond, can be speculated to occur as a
result of the exposure to nitrogen gas plasma. As shown in Fig. 5.5¢, the mother peak can
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Figure 5.5 MS spectrum of lipid A before and after nitrogen gas plasma exposure. (a) is before
exposure, (b) is after exposure and (c) is DMSO injection. LC-MS from Waters was used. L.C
was Waters 2695 and MS was Waters Quattro Premier® XE.LC column was Golf Pack®. HR
3.5um 2.1 x 150mm (polymer base C18 column), Mobile phase was acetonilrile, Flow rate was
0.2 ml/min, Injection volume was 5yl. MS mode. ESI negative mode was used for ionization.
Capillary voltage was 4.0kV, solvent degassing rate was 9001/h, cone gas rate was 50 I/h and
jon source heater was 120°C. MS data scanning conditions were as follows: MS scanning
range was 200-2000 Da, scan time was 0.5 s and cone voltage was 150V. Reproduced from
Shintani (2015).

be observed in the DMSO solvent alone injection, which means that the mother peak may
remain in the injection port and/or LC column as an artefact. Thus, due to the appearance
of this artefact, we unfortunately cannot compare the peak height of the mother peak before
and after nitrogen gas plasma exposure. However, it is clear that the peaks of around 200 and
700 m/zin lipid A decreased as a result of nitrogen gas plasma treatment (Fig. S.5a and b).

The mass of peaks at around 200-300 m/z may be single or double chains of C14 fatty
acids linked with ester bonds, and peaks at ~600-700 m/z may be multiple chains of C14
fatty acids linked with ester bonds. The exact site(s) in lipid A that were cleaved by nitro-
gen gas plasma exposure were not identified (Peeples and Anderson, 1985a,b), but we can
speculate that bonds with lower bonding energy such as ester or acid amide bonds may have
been cleaved (C(=0)-0, C(=0)-NH; Table 5.3).

Degradation of lipid A by nitrogen gas plasma exposure was observed by atomic force
microscopy (AFM) (Fig. 5.6) and X-ray photoelectron spectroscopy (XPS) (Fig. 5.7). Only
a trace of lipid A that was inoculated onto glass remained after nitrogen gas plasma exposure
based on AFM analysis. Moreover, XPS results were identical (Table 5.1), and showed an
increase in organic nitrogen due to increased binding energy at organic nitrogen peaks of
around 400 to 404 €V after treatment. Thus, at the nanomolar level, lipid A was almost com-
pletely degraded by nitrogen gas plasma exposure (Fig. 5.6).

Endotoxin inactivation is essential in implanted medical devices to avoid pyrogen shock
in patients, which may even cause death in the worst case. In that respect, the attainment of
endotoxin inactivation at a reduction of more than 5 logs by nitrogen gas plasma exposure in
30 min has important potential for application to medical devices prior to implantation into
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Table 5.3 Average bonding energy (kJ/mol)

Chemical bonding Bonding energy (kJ/mol)

H-H 436
C-C 344
c=C 615
CsC 812
0-0 143
c-0 350
C=0 725
C-H 415
N-H 301
O-H 463

Reprduced from Shintani et al., 2007).

X 5b 000
2. 3,000

Figure 5.6 AFM analysis of LP plasma-treated Lipid A (1.25pg), which was inoculated onto
glass. LP, lower pressure. Reproduced from Shintani (2015).

the human body. Adoption of this process would have significant benefit to patients requir-
ing medical device implantation by ensuring endotoxin-free devices to prevent disease
conditions associated with contaminating endotoxins such as pyrogen shock. Currently,
the relevant authorities require less than 10 EU (endotoxin unit)/ml while maintaining
material/functional compatibility (Tables 5.1 and 5.2), and this requirement can easily be
achieved with our method.

Since we have confirmed the destruction of spore-type microorganisms and endotoxin
inactivation by nitrogen gas plasma exposure, we will conduct experiments on prion inacti-
vation by nitrogen gas plasma exposure without carrier material deterioration (Shintani ef
al., 2007, Shintani, 2012). According to our preliminary experiments, normal prions were
totally destroyed as had been the case with spores and endotoxins. Based on this result, we
speculate that abnormal prions that cause Creutzfeldt-Jakob disease to humans would also
be destroyed by nitrogen gas plasma exposure without deterioration of the support material,
which would be extremely useful for preventing transmission of prion-mediated diseases.
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Figure 5.7 XPS analysis of LP plasma treated lipid A (1.25ug), which was inoculated onto
glass. LP, lower pressure. Reproduced from Shintani (2015).

We speculate that abnormal prions can be successfully destroyed while maintaining mate-
rial functionality because abnormal and normal prions have identical primary amino acid
sequences and differ only in regard to their higher dimension of structure. Abnormal prions
have more beta sheet structure than normal prions. We already confirmed that myoglobin,
which is enriched in beta sheet structure, is degraded by nitrogen gas plasma exposure
while maintaining material/functional compatibility. In addition, in future studies we will
conduct experiments to validate the sterilization of the interior of endoscopes, expensive
artificial heart valves, expensive surgery devices used for brain or nerve surgeries, etc., by
nitrogen gas plasma. Successful use of this technology for these applications would be ben-
eficial for patients requiring these devices to avoid iatrogenic diseases caused at health care
facilities.

Conclusion

Endotoxin inactivation can be successfully achieved by exposure to nitrogen gas plasma for
30 min. After this treatment, more than a 5 log reduction of endotoxin can be confirmed.
The authorities require less than 10 EU/ml of endotoxin together with material/functional
compatibility, and our method can successfully achieve these requirements without any dif-
fculties.

Lipid A is an active site of endotoxin. Lipid A degradation after nitrogen gas plasma expo-
sure was observed using high-performance liquid chromatography-mass spectrometry.
From the HPLC-MS-MS data, fragmentation and degradation of lipid A by nitrogen gas
plasma was confirmed. Normal prion and myoglobin degradation was also confirmed.
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Abstract

This study treated tetrodotoxin (TTX) solution with non-thermal multi-gas plasma and ana-
Iysed its decomposition by liquid chromatography coupled with electrospray time-of-flight
mass spectrometry. The TI'X signal in the mass spectrum was reduced to different levels by
plasma irradiations using various gases. Nitrogen plasma exhibited the optimal capability
for TT'X decomposition, followed by oxygen, argon, and carbon dioxide plasmas. The TT'X
concentration decreased 100-fold after 10 min treatment with nitrogen plasma. To better
understand the TI'X degradation process, plasmas of five different gases were generated by
a multi-gas plasma jet. The OH radicals and ozone molecules formed at the solution inter-
face were then measured by electron spin resonance and photometry. The largest amount
of ozone (64uM at 15s) and OH radical (130 uM at 30s) were generated by oxygen and
nitrogen plasma, respectively. We concluded that the generated reactive oxygen species such
as OH radicals and ozone contribute to TI'X degradation.

Introduction

In recent years, atmospheric plasma has been studied for applications in diverse fields
such as semiconductor processes (Kumagai et al., 2007), decomposition of harmful gases
(Tamura et al., 2011) and substances (Watanabe and Tsuru, 2008), and elemental analysis
(Shigeta et al., 2013). An atmospheric plasma source can generate high-density plasma and
enables a continuous plasma treatment without requiring a vacuum chamber and an exhaust
system. Therefore, it can provide high-efficiency, high-speed treatments, which are desired
in various industrial fields. In particular, atmospheric non-thermal plasma can be generated
at low temperature (room temperature to 100°C). Consequently, atmospheric plasma has
attracted great attention. Non-thermal plasmas using highly reactive species are reported to
sterilize E. coli (Shimizu et al., 2008) and spore bacteria such as B. subtilis (Takamatsu et al.,
2011). They can also hydrophilize surfaces (Takamatsu et al., 2013) and reduce the oxida-
tion of film surfaces (Nakashima et al,, 2012). These effects depend on the active species
generated by the plasma. For example, during organic material hydrophilization by non-
thermal plasma, molecular chains such as C-C, C-H, and C-O are thought to be removed
by reactive species reacting on the surface, generating hydrophilic functional groups such as
carboxyl and carbonyl (Xie et al., 2011). In addition, because the generated plasma is touch-
able and biologically friendly, it has been investigated as a body disinfectant (Isbary et al.,
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2012) and a food sterilizer (Ragni et al., iOlO). Considering these advantages, we proposed
that atmospheric non-thermal plasma might also decompose toxic substances with organic
bonds, which resist decomposition by both heat and chemical reaction. Among these sub-
stances is tetrodotoxin (TIX), more commonly known as puffer fish toxin. Ingesting just
1-2mg TTX can be fatal, even leading to death.

Although TI'X is stable at high temperature (>300°C), it can be decomposed by strong
acid or alkaline antagonistic agents, and TTX poisoning generally requires special therapy.
In this study, TI'X solutions were treated with multi-gas plasmas, and their decomposition
was analysed by liquid chromatography coupled with electrospray time-of-flight mass spec-
trometry (LC-ESI-TOF-MS). In addition, the amount of reactive species generated by the
plasma was identified by electron spin resonance (ESR) and photometric measurements.
By quantifying the reactive species, we can better understand the reaction process of TIX
decomposition.

Atmospheric muiti-gas plasma jet

Fig, 6.1 is a photograph of our plasma jet source. This source generates stable atmospheric-
pressure plasmas of various gases; helium, argon, oxygen, neon, nitrogen, carbon dioxide,
air, and mixtures of these gases at low gas temperature (<57°C) and approximately 10W
power (Takamatsu et al., 2013). The source is easily operated by virtue of its small body
(length 83 mm; weight 160 g). The body is grounded and the interior high-voltage electrode
is connected to a power supply (Plasma Concept Tokyo, Inc.) operating at 16kHz and 9kV.
The discharge gap, defined as the distance between the high-voltage and grounded elec-
trodes, is fixed at 1.5 mm. The electrodes are composed of aluminium, and each electrode is
12.6 mm? in area. The generated plasma flows out through a 1-mm-diameter hole.

TTX degradation

"The chemical structure of TT'X is shown in Fig. 6.2. A 10 ppm TI'X (Cellular biology grade,
Wako Pure Chemical Industries, Ltd., Osaka, Japan) solution was prepared in ultrapure
water, and 1 ml of this solution was added to a 1.5-mL micro-tube. The sample was subjected

Figure 6.1 Damage-free multi-gas plasma jet, the power supply is operated at 16kHz and
9kV.
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Figure 6.2 Chemical structure of tetrodotoxin (TTX).

to a multi-gas plasma jet built in the laboratory (Takamatsu et al., 2013). The gas flow rate
was maintained at 2 1/min, and the treated TI'’X solution was placed 15 mm from the plasma
source outlet, asillustrated in Fig. 6.3. After the plasma treatment, the solutions were analysed
by LC-ESI-TOF-MS (micrOTOFII, Bruker Co.,, MA, USA) under the analytical conditions
listed in Table 6.1. The mass spectra of solutions treated with oxygen and nitrogen plasmas
for various exposure times (1, 2, S and 10 min) were investigated, and the residual quantity
of TI'X was measured from the TI'X standard curve. The mass spectrum intensity of TI'X
solution exposed to multi-gas plasmas for 5 min was also investigated. The gas species were
argon, mock air (N2:O2 = 8:2), nitrogen, oxygen and carbon dioxide.

TIX can be measured at the m/z of the proton addition molecule [M+H]* (m/z =
320.1) (Tsai et al., 2006); therefore, the spectral intensity assays the decomposition degree
of TT'X. Fig. 6.4 shows the mass spectra of TI'X solutions treated with nitrogen and oxygen
plasmas for different exposure times. After both plasma treatments, besides the [M+H]*
ion at m/z=320.1 and [M + OH]" ion at m/z=336.1, additional peaks appeared at m/z =
318.1, suggesting that TI'’X was either oxygenated or decomposed by plasma exposure. In

HV.: 9 kV, 16 kHz

O Gas flow: 2 L/min
o

~1 - Plasma source

Figure 6.3 Experimental setup; Gas flow rate is 2 L/min, TTX concentration is 10 ppm, liquid
volume is 1 ml and treatment distance is 13 mm.
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Table 6.1 ESI-TOF-MS parameters

Scan range (m/z) 50-700
lon polarity Positive
Set capillary (V) 4500
Set end plate offset (V) -500
Set nebulizer (bar) 1.8

Set dry gas (I/min) 10

Set divert valve Waste
Flow rate (ml/min) 0.2

Mobile phase

Injection volume (ul)

50% acetonitrile
30

100 |10 min (a) Nz plasma 100 | 10 min {b) Oz plasma
80 80
80 60
40 40
20 20 3202 3361
0 0
100 |5 min 190 |5 min
80 80
80 80
40 40
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Figure 6.4 Mass spectra after (a) N, and (b) O, plasma treatment (gas flow rate = 2 I/min).

800

addition, the mass spectra intensity decreased as the plasma exposure time increased, indi-
cating that prolonging the plasma exposure time more effectively degraded the TI'X. The
TIX concentration in samples exposed to oxygen and nitrogen plasmas for various times
was determined from a TT'X standard curve. As shown in Fig. 6.5, a 10-min nitrogen plasma
treatment reduced the TI'X concentration from 10 ppm to 0.1 ppm.

The spectrum intensities of TT'X solutions treated by different gas plasmas are shown
in Fig. 6.6. This result demonstrates that nitrogen plasma most effectively degrades TI'X,
followed by oxygen, argon, carbon dioxide, and air plasmas.

OH radical measurement of various gas plasmas using ESR

Each reactive species reacts with individual spin-trapping agents, and the spin adducts can be
identified by ESR measurements. The spin-trapping agent used in this study was §,5-dime-
thyl-1-pyrroline-n-oxide (DMPO), which detects OH radicals (Kohno et al,, 1991). The

Figure 6.5 TTX ¢
flow rate = 2 I/mii

Figure 6.6 Inten:
treatment time = !

DMPO was disst
of 200mM. The ]
min, modulation
0.1 mT, and time
Each reactive
carbon dioxide w
surfaces 6 mm dis
The amount of ea
piperidine 1-oxyl
As shown in .
nitrogen plasma.
amounted to 84,




(b) Oz piasma

te = 2 {/min).

increased, indi-
d the TI'X. The
I various times
iitrogen plasma

mas are shown
degrades TT'X,

adducts can be
was §,5-dime-
il, 1991). The

Tetrodotoxin Inactivation by Gas Plasmas | 55

12
& N2 plasma

10
% 02 plasma

TTX [ppm]
(o)}

0 1 2 5 10
Plasma irradiation time [min]

Figure 6.5 TTX concentration after treatment with N, and O, plasma for different times (gas
flow rate = 2 I/min).

120

Intensity [a.u.]

Ar air N2 02 COz

Figure 6.6 intensity of TTX spectrum after treatment with different gas plasmas (plasma
treatment time = 5 min; gas flow rate = 2 I/min).

DMPO was dissolved in phosphate-buffered saline (-) (pH 7.5) at a fixed concentration
of 200 mM. The ESR settings were microwave frequency = 9.424818 GHz, sweep time = 2
min, modulation frequency = 100kHz, magnetic field = 335.5+ § mT, modulation width =
0.1 mT, and time constant = 0.1s.

Each reactive species generated by plasmas of argon, mock air, nitrogen, oxygen, and
carbon dioxide was investigated. Sample solutions of 200 yl were placed with their liquid
surfaces 6 mm distant from the plasma source outlet and subjected to 30 s plasma treatment.
The amount of each reactive species was calibrated with spin adducts 0f 2,2,6,6-tetramethyl-
piperidine 1-oxyl, whose radical amount was known.

As shown in Fig. 6.7, the largest amount of OH radical of 130 uM was generated by
nitrogen plasma. The OH radical produced by argon, oxygen, and carbon dioxide plasmas
amounted to 84, 32, and 28 M, respectively.
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Discussion

The atomic, ion, and molecule lines of each gas species in the plasmas has already been
confirmed (Takamatsu ef al., 2013). These reactive gas species react with each other and
with water to produce reactive oxygen species (ROS) such as OH radicals, ozone, and other
reactive species. ROS is thought to be capable of oxidizing organics to carbon dioxide and
water (Kuroki et al., 2006). In this study, treatment with nitrogen and oxygen, which gener-
ate large amounts of OH radicals and ozone molecules, efficiently reduced the intensity of
the TI'X peaks.

Regarding reactive-species production by nitrogen plasma, it appears that atomic nitro-
gen and water generate OH radicals as shown in equation 6.1 (Laroussi and Leipold, 2004).
Nitrogen generated more OH radicals than the other gas plasmas, suggesting that OH radi-
cals are mainly responsible for TI'X degradation.

2N+2H,0 >N, +2HO- +2H- (6.1)

Regarding reactive species production by oxygen plasma, it appears that atomic oxygen,
water and molecular oxygen generate OH radicals and ozone as shown in equations 6.2
and 6.3, respectively (Takamatsu et al., 2012; Ionin et al., 2007), suggesting that ozone also
decomposes TI'X.

0+H,0 »2HO- (62)
0+0,+M> 0, +M (6.3)
In contrast, treatment with mock air plasma, which produces low amounts of OH radicals
and ozone, scarcely altered the TI'X intensity. Although mock air contains both oxygen and
nitrogen, these gases quickly react to yield NO radicals rather than OH radicals or ozone

molecules. The reaction is shown in equation 6.4 (Herron and Green, 2001).

N+0-NO (6.4)

Future trends

From these findings, we expect that plasma treatment can neutralize organically bonded
toxic substances in foods and drink, provided that the plasma gas species are suitable for
decomposition.
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Current Progress in Advanced
Research into Fungal and
Mycotoxin Inactivation by Cold
Plasma Sterilization

Pervin Basaran Akocak

Abstract

Growth of fungi can cause physico-chemical spoilage, deterioration, nutritional and organo-
leptic property losses in food and feed commodities. Furthermore, mycotoxins produced by
fungi are tremendous food safety and economic concern, and the maximum contamination
levels are regulated by the international organizations. Mycotoxin control strategies include
pre- and post-harvest detoxification approaches. Currently available methods are not
sufficient for the full elimination or decontamination of mycotoxins. Mild non-thermal dis-
infection methods, which aim at actively improve the storability of goods and preserve the
quality parameters of the product during post-harvest storage are continuously sought by
the food industry. Recent studies indicate that application of plasma is among the promising,
gentle non-thermal technologies and a new tool for the prevention and decontamination
of fungal development and mycotoxin contamination while improving storability of food
commodities during post-harvest storage.

Introduction

Food and feed commodities may become contaminated by filamentous fungi while in the
field, during harvest handling, post-harvest storage and processing. Fungi cause nutritional
loss, colour change, unpleasant odors, reduced digestibility and germination quality of
seeds, baking and malting quality loss, and harm plant material’s use in animal feed or food
chain (FAQ, 1996). Even further, some of the fungal species produce poisons named, myco-
toxins which are tremendously affecting the safety, commercial value and final usability of
the product. Nearly 4.5 billion people in developing countries are chronically exposed to
critical amounts of mycotoxins (Williams ef al., 2004). Major factors that affect the myco-
toxin production are plant genotypes, fungal species and the spore load, use of chemical
preservatives, plant composion, soil type, unbalanced fertilization, insect activity, drought,
humidity, temperature, oxygen level and atmospheric conditions during drying and storage
(Magan and Aldred, 2007). There is no biochemical significance for mycotoxin production
in fungal development and metabolism; and little is known about the complex factors (e.g.
agronomic practices and climatic conditions) that influence the genetic regulation of myco-
toxin biosynthesis (Yu and Keller, 2005).
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Mycotoxins are chemically diverse secondary fungal metabolites, and generally have
aromatic lactone or coumarin rings in their chemical structure. To date more than 300
chemically diverse mycotoxins produced by more than 100 moulds have been identified.
However, for foodstuff and feedstuffs, only a small number of mycotoxins (aflatoxins, ochra-
toxins, trichothecenes (deoxynivalenol, nivalenol), zearalenone, fumonisins, ochratoxins
and fumonisins) are of interest, and they are mainly produced by filamentous fungi in the
genera of Aspergillus spp., Penicillium spp., Fusarium spp., Claviceps spp. and Alternaria spp.
(Kumar et al., 2007) (Table 7.1). Aflatoxins B1, B2, Gl and G2 are four naturally occurring
forms of aflatoxins, mostly produced by A. flavus, A. parasiticus, A. nominius and A. pseu-
dotamari (Basaran et al., 2008). Aflatoxin B1 is excreted in milk in the form of aflatoxin M1
(Basaran et al.,, 2008). Zearalenone is oestrogenic mycotoxin, biosynthesized through a pol-
yketide pathway by a variety of Fusarium species (F. graminearum, F. culmorum, F. cerealis, F.
equiseti, F. crookwellense and F. semitectum) (Pfohl-Leszkowicz et al., 1995). Trichothecenes

Table 7.1 Major mycotoxins of food and feed concern and the food produces in which they
are reported

Food/feed produces

Mycotoxins Producing fungal species
Aflatoxins Aspergillus flavus, A. parasiticus, Tree nuts, fig, peanut, spice pepper,
A. nominus, A. pseudotamari other spices, cereals (maize,
barley), beer, cotton seed, milk
{animal consumption of mould/toxin
contaminated feed)
QOchratoxin Aspergillus ochraceus, A. carbonartus, Grape, raisins, cacao, nut, spices,
A. niger, A. alliaceus, A. sclerotiorum, cereals, wine, coffee, spices, beans,
A. sulphureus, A. albertensis, groundnuts, milk and meat products
A. auricomus, A. wentii, Penicillium (animal consumption of mould/toxin-
verrucosum contaminated feed), beer
Zearalenone Fusarium culmorum, F. graminearum, Maize, barley, oats, wheat, sorghum,
F. graminearum, F. culmorum, millet, rice, cereals, soya, beer, acha,
F cerealis, F equiseti, F. crookwellense, dried fruits and vegetables
F. semitectum
Fumonisins Fusarium vericillioides, F. profiferatum Maize, sorghum, cereals, flour,

starch, groat, onion, garlic,
asparagus, pea seed

Grains, fruits, dried fruit products,
beans, wheat, barley, maize, cereals,
rye, soybean

Trichothecenes Fusarium culmorum, F. oxysporium,
E solani, F. equiseti, F. graminearum,
F. moniliforme, F. pseudograminearum,
F. sporotrichioides, Trichotceum roseum,
F. poae, F. cerealis

Meat and eggs (animal consumption

Patulin Penicillium expansum, P. patulum,
Aspergillus clavatus, A. giganteus, of mould/toxin contaminated feed),
Byssochlamys nivea fruit juice, fruit (apple, pear, peach,
cherry, apricot, pineapple, grape,
banana, strawberry, plum) and fruit
derived products
Fusarins Fusarium acuminatum, F. armentacum, Maize, cereals, wheat, barley, oat
F culmorum, E graminearum, F. culmorum
Culmorin Fusarium crookwellense, Cereals, rye, sorghum, malt

E sporotrichioides, F. graminearum,
F. culmorum
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are sesquiterpenoids, mainly produced by species of Fusarium and fungal genera like
Trichoderma. Their biosynthesis begins with the formation of trichodiene, which undergoes
oxygenation and esterification reactions (Ward et al., 2002). Deoxynivalenol belongs to the
group of trichothecenes and mostly found in cereal grains. Patulin is produced by particu-
larly Penicillium spp., Aspergillus spp. and Byssochlamys spp. species, which commonly occur
in fruits and cereals (Steiman et al., 1989). Fumonisin was first isolated from South Africain
1988 and formed mainly by Fusarium verticillioides and Fusarium proliferatum (Yoshizawa,
et al., 1994). Fusarium spp. produced zearalenone contaminates maize, barley, oat, wheat,
sorghum, millet and rice, and processed cereals products such as malt, soy souce and beer
(CCFAC, 2000). Varga et al. (1996) reported detailed screening of ochratoxins forming spe-
cies, which are commonly detected in dried fruits, cereals, milk, meat products, and spices.

Mycotoxins evoke toxic response and significant hazard when introduced even in
very low concentration to wide range of animals and humans by ingestion, touching and
absorbsion through the skin contact, and inhalation through lungs (Zain, 2011). Mycotoxic
effects called mycotoxicoses might be acute, subacute or long-term chronic. Aflatoxins are
categorized as Group 1 carcinogens (IARC, 2002). They inhibit transcription and protein
synthesis, and even further they cause mutations and teratogenic effect, neural tube defects
in newborn infants, anorexia, lethargy, jaundice, esophageal cancer, can impair the central
nervous system, and compromise immunological system (Sharma, 1993; Williams et al,,
2004; Wild and Turner, 2002; Mishra and Das, 2003). Once digested, aflatoxins are con-
verted by the liver into toxic reactive epoxides which bind covalently to macromolecules
such as DNA, RNA and enzymes, resulting in hepatic damage to liver cells, enlarged livers,
disseminated intravascular coagulation and internal haemorrhaging (Williams et al., 2004;
Cullen and Newberne, 1994; Pereyra et al., 2008). Furthermore, in animals, aflatoxin Bl
is associated with several diseases, such as leukoencephalomalacia in mammalians, skeletal
anomalies in rabbits, vomiting, depression, polydipsia, polyuria, anorexia, weakness and
diarrhoea in cats and dogs, and liver cancer and renal necrosis in rats (Newberne et al,
1966; Schmidt and Panciera; 1980; Miller and Wilson, 1994). Patulin toxicity to mammals
includes genotoxicity, teratogenicity, mutagenicity, embryotoxicity and carcinogenicity
(Donmez-Altuntas et al., 2013; Roll et al., 1990). Zearalenone is an oestrogenic resorcylic
acid lactone that causes severe morphological and functional disorders of reproductive
organs in livestock; additionally, hepatocellular adenomas and pituitary tumours have
been observed in long-term carcinogenicity studies in mice (Richard, 2007; Maragos et
al., 2010). Ochratoxin demonstrates nephrotoxic, teratogenic and immune-suppressive
properties. It causes cancer and deterioration of liver or kidney function (O’Brien et al,
2005). Fumonisin has been demonstrated to induce apoptosis in cultured human cells and
in rat kidneys, and triggers human oesophageal carcinoma, and furthermore its consump-
tion has been implicated in neural tube defects in babies (Yoshizawa et al., 1994; Tollenson
et al., 1996; Marasas et al., 2001 ). Deoxynivalenol reduces feed intake and suppresses the
immune system in farm animals, activates critical cellular kinases involved in signal trans-
duction, and inhibits protein synthesis; further, it causes circulatory shock, reduced cardiac
output and, ultimately, death (Doll et al., 2008; Pestka and Smolinski, 2005). Because of
above-mentioned effects stringent regulations and maximum tolerated limits were imposed
worldwide. Most instantly, the European Food Safety Authority (EFSA) guidance values
are given with 0.5 mg zearalenone/kg and S mg deoxynivalenol/kg relative to feed with 12%
moisture content (Winkler et al., 2013).
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Conventional inactivation methods for fungi and mycotoxins

The occurrence of fungal development and accumulation of mycotoxins in food and
feedstuff are not avoidable. Regardless of all the precautions, the Food and Agricultural
Organization (FAO) of the United Nations estimates nearly a quarter of the world’s plant
crops are contaminated with mycotoxins to various extents (WHO, 1999). Management of
mycotoxin contamination includes prevention of exposure to mycotoxin-producing fungi,
monitoring of mould development, routinely analysis of mycotoxins, and finally sustain-
able decontamination. There are a number of prevention strategies (physical, chemical and
biological methods or combinations of these) for contamination and the growth of fungi
in the field and post-harvest. Pre-harvest strategies include crop rotation, sowing date, till-
age, cultivation techniques, selection of soil fertilizers, crop variety selection and breeding,
use of transgenic species resistance to development, pest control, fungicide applications,
and microbial strains (e.g. endophytic bacteria or atoxigenic fungi) that can out-compete
toxigenic strains in the field (Bacon et al., 2001; Jouany, 2007). According to Dorner et al.
(2002), atoxigenic strains of A. flavus and A. parasiticus introduced to soil of developing
peanut crops reduced aflatoxin contamination in the following year by 70%. Ochratoxin
and patulin producing fungi were reported to be inhibited by the yeast species of Candida
zemplinina, Saccharomyces cerevisiae, Pichia kluyveri, and Metschnikowia aff. fructicola (Zhu et
al,, 2015a,b).

Despite all the pre-harvest efforts to prevent fungal contamination in the field, mould
spores can still contaminate and then grow during storage and transportation of agricultural
products (Basaran et al., 2008). Successful tools are sought for the post-harvest control
of pathogenic fungi. Post-harvest control schemes consist of effective drying, control of
humidity and temperature during storage, physical removal of contaminated materials by
sorting, washing, dehulling, use of chemicals and preservatives, and storage under modified
atmosphere conditions. Fumigation with ethylene oxide, prochloraz, propiconazole, epoxy-
conazole, tebuconazole, cyproconazole, itraconazole, amphotericin B, and azoxystrobin can
inhibit fungal metabolism and fungal development (Haidukowski et al., 2004). However,
chemical contamination is not desired by the consumers and strictly regulated by national
food safety authorities, and the fumigation with some compounds are prohibited in many
countries due to detrimental effects to human health and environment (Fowles et al,,
2001). The effectiveness of chlorine water surface spraying is limited, and there is the risk
of formation of carcinogenic chlorinated compounds, and therefore its usage on minimally
processed vegetables is restricted in the Netherlands, Sweden, Germany and Belgium (Rico
et al., 2007). Several studies have also reported fungicidal effects of fumigation with plant
essential oils extracted from herbs or plants such as cinnamon, citral, palmarose, eugenol
oil, Litsea cubeba, clove, eucalyptus, anise, spearmint and camphor, but their use is not
practically applicable (Chao et al., 2000; Velluti et al., 2003). Although 2-7kGy gamma irra-
diation appears to be partially effective to decontaminate fungi, and its implementation has
been strongly obstructed worldwide. Fungi are known to be highly resistant to irradiation, it
causes nutritional losses in food, consumers have negative opinion of irradiation, and there
is strict international legal regulation for the irradiated ingredients (Arvanitoyannis et al.,
2010). UV-C irradiation has been applied as a non-thermal treatment to eliminate myco-
toxin-producing fungi without adversely changing the quality of nuts (Basaran, 2009). But
UV-C showed limited penetration on the surface, fungal inactivation was not homogeneous,
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and the ineffectiveness of the UV-C radiation is dependent on the power and the distance
from the UV source (Basaran, 2009).

Regardless of fungal decontamination strategies; mycotoxins frequently contaminate
agricultural commodities, so successful detoxification tools are still researched to reduce or
eliminate the toxic effects of mycotoxins. Food related mycotoxins are extremely resistant
to high temperature, food processes such as baking, roasting, frying, extrusion shown to
have only partial inhibition effect (Bullerman and Bianchini, 2007). Roasting pistachio nuts
at 150°C for extreme 120 min could have reduced the aflatoxin content only 63%, while
pressure cooking of rice contaminated with aflatoxin B1 showed a reduction of 70% (Park
et al., 2005; Yazdanpanah et al., 2005). Cenkowski et al. (2007) studied the effect of super-
heated steam at 185°C and observed 50% reduction in deoxynivalenol after 6 min. Baking
of biscuits could have destroyed only about two-thirds of the ochratoxin (Subirade, 1996).
Although some promising results were observed with heat processing, high temperature
causes unacceptable changes in nutritional and sensory properties of the product. There are
contradicting reports on the impact of irradiation on mycotoxin levels. Irradiation of a 50-mg
aflatoxin solution with 10kGy resulted in 40% inactivation (Patel et al., 1989). Markov et
al. (2015) observed that SkGy irradiation reduced aflatoxin B1 by around 60% of initial
contamination, while some vitamins such as tiamin and niacin are not stable when treated
with ionizing radiation (Khattak and Klopfenstein, 1989). Ritieni ef al. (1999) and Basaran
(2009) studies UV irradiation effect on mycotoxins. Ritieni et al. (1999) reported no effect
on fusaproliferin, produced by some phytopathogenic Fusarium species; while Basaran ef al.
(2009) observed that 6 h UV-C yielded nearly 25% reduction in aflatoxin Bl and G1, but
this dose had no effect on aflatoxin B2 and G2 on contaminated hazelnuts. Mycotoxins can
be partially destroyed or converted to less toxic compounds by chemical treatment. These
chemicals include acids, bases, hydrogen peroxide, ozone and other oxidizing agents, citric
acids, bisulphites, NaHCO,, H,0,, calcium hydroxide monoethylamine, ammonia or cal-
cium hydroxi demonoethylamine (Applebaum and Marth, 1982; Coker et al., 1998; Park,
1993; Bauer, 1994; Moerck et al., 1980; Mendez-Albores, 2007; Gwenaelle et al., 2011).
Beekrum et al. (2003) reported that naturally occurring phenols (chlorophorin, irokom,
maakianin, vanillic acid, and caffeic acid) were effective in the degradation of aflatoxin B1.
Efficiency of the chemical degradation is specific to the structure of mycotoxin under investi-
gation. Concentrated ozone has completely degraded and detoxified zearelone, but a greater
resistance of aflatoxin B2 and G2 was observed (McKenzie et al., 1997). The presence of
double bonds at C8-C9 position for aflatoxin Bl and aflatoxin G1, and the tendency of
ozone to react at olefinic positions indicated the possible sensitivity towards ozone (Cullen
et al., 2009). The most recent approach reducing mycotoxins in the feed industry is the addi-
tion of nutritionally inert sorbent materials and removal of mycotoxins by adsorption or
binding to polymers (Avantaggiato et al.,, 2005). Aluminosilicates (e.g. clays, zeolites) were
reported for the adsorption of mycotoxins into porous structure and trapping by electric
elementary charges (Colvin ef al., 1989). The limitation of aluminosilicate adsorption is the
simultaneous decrease of quality parameters such as colour, aroma, and flavour characteris-
tics. Biotransformation, biodegradation or fermentation of the mycotoxins by a variety fungi

(A. niger, Trichoderma viride, Mucor ambiguus, Eurotium herbariorum, Rhizopus spp.), yeast
(Trichosporon mycotoxinivorans, Xanthophyllomyces dendrorhous, Rhodosporidium paludige-
num, Pichia anomala, P. kluyveri and Hanseniaspora uvarum), and bacteria (Mycobacterium
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fluoranthenivorans, Rhodococcus spp., Corynebacterium rubrum, Lactobacillus rhamnosus,
Rhodococcus erythropolis, Flavobacterium auranticum) to less toxic compounds have been
reported (European Food Safety Authority, 2009; Zhu et al., 2015; El-Nezami et al., 2000;
Hormisch et al., 2004; Masoud and Kaltoft, 2006; Yin et al., 2008). According to Karlovsky
(1999), biological control or bioconversion of mycotoxins to non-toxic substances is usu-
ally incomplete or inefficient.

Non-thermal (cold) plasma applications
Mycotoxins are small molecules that are extremely difficult to remove or eliminate with-
out harming the produce. Currently available methods are not fully sufficient to combat
mycotoxin-producing fungi, asthey have significantdrawbacks. Some methods cause una-
voidable chemical changes, have unacceptable negative effects on the final products and do
not completely eliminate fungal growth and mycotoxin contamination, and some of these
processes are not economically viable. So far, none of the above-mentioned strategies has
been able to reduce mycotoxin production to acceptable levels. Gentle and more effective
techniques are considered necessary by food handlers to deal with fungal contaminants.
Plasma refers to neutral ionized (or energized) gases, composed of photons, ions and free
electrons as well as atoms in their fundamental or excited states with a net neutral charge
(Selcuk et al., 2008). Cold plasma is generated by excitation of gases with an immense
energy (high-voltage electrical discharges, microwaves, irradiation or other energy sources)
under either low or atmospheric pressure. In the literature, there are different approaches
for the design of a plasma production/treatment unit for food products. But in general, gas,
power source, plasma production and treatment unit, and vacuum system are included in
a food related plasma treatment system. Fig. 7.1 shows one of the examples for a plasma
treatment unit which has been used in our earlier studies (Basaran et al., 2008).

Figure 7.1 Plasma sterilization unit. 1, power uni; 2, treatment/sterilization compartment;
3, Remote computer control system; 4, plasma production compartment; 5, gas source; 6,
sensors; 7, food; 8, vacum pump.
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Gas plasma is efficient to inactivate a wide range of microorganisms (bacterial vegetative
cells, spores, yeasts and moulds) by adhering to foodstuff surface within short treatment
durations and at ambient temperatures (Akitsu et al., 2005). In order to produce plasma
effective for the elimination of microorganisms, conditions are to be optimized. The major
factors that affect the competence are plasma source gas species, treatment duration, electric
pulse and power, microbial species, and surface properties of food item. Antimicrobial effect
of plasma sterilization has been reported with a number of gases such as O,, N,, air, H,,
N,0,,H,0,,CO,,SO,, halogens, and SF, etc. (Kim et al., 2014, Selcuk et al., 2008; Scholtz
et al., 2015; Ehlbeck et al., 2011; Shintani et al., 2010). The definite effect mechanism of
plasma is complex and varies substantially with the type and chemical composition of reac-
tive species. If air is used as gas source, a mixture of neutral and reactive oxygen species
(0,, 0,7, 0,, O, 0%, O), charged nitrogen species such as N*, NO*, NO~, NO,, N,0,,
N,0O), hydroxyl and hydroperoxyl radicals (OH and HO,), hydrogen peroxide (H,0,) are
produced (Scholtz ef al., 2015; Kim et al., 2014). Oxygen species generally demonstrate ger-
micidal effect by etching action on cell membrane of food pathogens. Surface amino acids
of glycoproteins and lipids are oxidized by electrons and ions, which leads to diffusion of
cellular contents, growth inhibition, and ultimate death of the cells (Zhang and Chen, 2009;
Kvam et al., 2012). Ohkawa et al. (2006) observed that the spherical cellular structure of
yeast C. albicans was destroyed, and the residue of cell leakage was detected after cold atmos-
pheric plasma treatment. In other studies, cracking of cell walls and broken conidiophores
and the vesicle of fungal species were observed (Basaran et al., 2009; Yang et al., 2009;
Suhem ef al,, 2013). Even further some studies indicate damage to DNA chain, metabolic
disturbance in biosynthesis, reproduction and repair mechanisms (Akishev et al., 2010).

Although there have been quite a number of studies reporting antibacterial effect of
plasma, limited number of studies focused on the effect of plasma against fungi and myco-
toxins. Studies to date provide evidence that while no significant differences in susceptibility
among bacterial species is observed under same treatment conditions, fungi requires longer
treatment duration (20-30 min) and usually antifungal effect significantly depends on
the plasma system, the type of gas used for plasma production, fungal species, microbial
load, and the food’s composition and the surface condition (Basaran et al., 2008; Scholtz
et al., 2015). A. niger spores were spread on an agar medium surface and exposed to the
atmospheric pressure plasma with variable nitrogen and oxygen mixtures. Inhibition zones
of 30-40 mm in diameter after 30-60 s of treatment were observed (Akishev et al., 2008). In
our earlier studies, antifungal effects of air plasma and SF gas plasmas on hazelnut, peanut
and pistachio nuts were evaluated in detail (Basaran et al., 2008). Air plasma treatment
at 10 min resulted in 2 log reduction of A. parasiticus. Determination of the mould viable
counts from SF, treated hazelnuts demonstrated nearly a § log decrease in CFU after 5 min
of treatment, any further duration of SF, plasma treatment did not significantly affect the
fungal load (Basaran et al., 2008). Suhem et al. (2013) reported the effects of argon plasma
treatment on the growth of A. flavus on malt extract agar and brown rice cereals at powers
of 20W and 40 W with exposure times at S, 15 and 25 min. No germination of A. flavus was
observed after a plasma treatment at 40 W for 25 min. The structure of A, flavus was damaged
by argon plasma where conidiophores and the vesicle were found to be broken (Suhem et
al., 2013). Effects of the microwave-powered cold plasma treatments on the inhibition of A.
flavus artificially inoculated red pepper powder were reported by Kim et al. (2014). A. flavus
was reduced by 2.5 log spores/gram with nitrogen plasma at 900 Watt after 20 min duration
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(Kim et al., 2014). They concluded that the reactive nitrogen species and UV photons, elec-
trons, and hydroxyl radicals might have oxidized glycoproteins in the fungal cell wall. The
inactivation of F. graminearum, F. oxysporum, and Neurospora crassa using microwave plasma
with nitrogen, argon and air gases were tested (Na et al., 2013). Hyphal growth was most
impeded in F. graminearum under same treatment duration as compared with other fungal
species tested. Reduction in hyphal extension was much more when combination of Arand
O, was used, compared to combinations such as Ar and N, Ar and air, or N, (Na et al.,
2013). Park et al. (2012) reported the cellular and molecular responses of the filamentous N.
crassa to the action of argon plasma, the plasma treatment did not show significant change
for the germination rate in sodium chloride solutions, whereas more than 50% of N. crassa
spores were inactivated in water or non-ionic sorbitol, glycerol and sucrose solutions (Kang
et al, 2014). N. crassa spores appeared to shrink and damage to cytoskeletal structures was
observed. Park et al. (2012) and Kang et al. (2014) concluded that the surrounding environ-
ment enormously affect the behaviour of reactive species.

Seed treatment is the most cost-effective disease control method for agricultural com-
modities. Although a number of studies reported the plasma treatment for the sterilization
of the seed surface; the experimental data on the seed germination and plant development
after plasma treatment are scanty and disputed. Selcuk et al. (2008) determined the efficacy
of a low pressure cold plasma system using air gases and SF to reduce strains of Aspergillus
spp. and Penicillum spp. on artificially inoculated seed surface and the treatment duration
ranged from 5 to 20 min. A 3 log reduction of the initial load was observed for 15 min SFy
plasma treatment time and damage to living seeds was avoided (Selcuk et al., 2008). In
other studies, root and sprout length and dry weight after germination were measured and
concluded that non-thermal plasma treatment enhanced the germination and plant produc-
tivity of wheat, maize, soybean and other species within early growth time (Filatova et al.,
2012; Ling et al., 2014). Even further, pre-sowing plasma treatment was reported to enhance
germination and improve plant production (Selcuk et al., 2008; Filatova et al., 2012). Volin
et al. (2000) conducted an earlier study where seeds were treated with tetra fluoride or octa-
decafluorodecalin. The final percentage of germination was almost the same in the cases of
plasma-treated and untreated samples. However, they reported a delay in germination as
compared with the untreated controls (Volin et al., 2000).

Plasma treatment is also candidate to reduce natural microflora of yeast and mould con-
tamination for the heat sensitive food packaging materials (Lee et al., 2015). Muranyi et
al. (2007) reported the microbial inactivation effectiveness of plasma against the fungus A.
niger on polyethylene terephthalate foils. A. niger appeared to be the most resistant species
with an inactivation rate of about 5 log in S's. Later, Muranyi et al. (2008) investigated the
influence of humidity on the inactivation, and the A. niger spores were mostly inactivated at
a high relative humidity of 70% (approx. 2 log). An alternative plasma source for treatment
of foods is the use of a dielectric barrier discharge set-up, which offers the advantage of the
treatment of food inside an already sealed container that prevents the risk of recontamina-
tion post processing (Misra et al., 2014a,b). Matan et al. (2014) tested the combined effect
of cold atmospheric plasma and clove oil on palm sheet as food packaging material, against
growth of A. niger, Penicillium spp., and Rhizopus spp. Plasma increased the antifungal activ-
ity of clove oil; furthermore, wettability tests showed that plasma treatment increased the
contact angle of the leaf sheath (Matan ef al., 2014). The results have demonstrated the good
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effect of using atmospheric plasma treatment to enhance antifungal activity of clove oil and
to control moulds on the organic packaging material.

Heat-resistant mycotoxins do not decompose readily, and they are difficult to eliminate
in foods without compromising sensorial and nutritional quality (Shapira and Paster, 2004).
Elimination of fungi does not mean detoxification of mycotoxins, because some fungi are
not able to produce mycotoxins and those producing mycotoxins secrete different amounts
depending on the fungal species, the substrate and stress conditions (Basaran, 2009). Afla-
toxin elimination effect of air and SF, plasmas was investigated (Basaran et al., 2008). As
compared with control samples the level of aflatoxin B1 and B2 was reduced nearly 88-90%
with air plasma (Basaran et al., 2008). Effect of SF, gas plasma was more moderate and
aflatoxin B1 and B2 estimated to be reduced approximately 80-87%. Aflatoxin G1 and
G2 were most resistant and only a maximum of 60% and 30% reduction were detected,
repectively (Basaran et al,, 2008). Park et al. (2007) reported the degradation effect of
microwave-induced argon plasma at atmospheric pressure on three mycotoxins (aflatoxin
B1, deoxynivalenol and nivalenol). Deoxynivalenol and nivalenol were degraded relatively
slowly as compared to aflatoxin B1, and a complete removal of the mycotoxins was observed
after 5 s of plasma treatment (Park et al.,, 2007). Most recently, Wang et al. (2015 ) investigated
low pressure plasma’s ability to inactivate aflatoxin B1, and 300 Watt plasma resulted in 88%
degradation after 10 min of treatment. The possible structures of the degradation products
were also elucidated by Wang et al. (2015). They proposed that the degradation of aflatoxin
B1 wasinitiated with an addition reaction that occurred in the C8-C9 bond, resulting in the
formation of an intermediate (C,,H, ,O,) as the major product. The inhibitory effect of cold
argon plasma on fumonisin B2 and ochratoxin contaminated on date fruits were reported by
Ouf et al. (2014). Fumonisin B2 was not detected after 6 min of plasma treatment, whereas
ochratoxin was completely removed when the fungus was treated for 7.5 min.

While antifungal and anti mycotoxin effect of cold plasma are tested; the consequences
of cold plasma treatment on the quality characteristics (general apperance, colour, firm-
ness and texture, health properties, plant growth rate, plant metabolic activity, induction
of plant secondary metabolites, nutritional yield, and photosynthetic operations) of fresh
or processed fruit and vegetable products have also been assessed by various studies (Kim
et al., 2014; Lee et al., 2004; Lacombe ef al., 2015; Grzegorzewski ef al., 2011; Misra et al,,
2014a,b; Baier et al., 2013; Bubler et al., 2015; Park et al., 2013). Published studies have
indicated some conflicting results. Quality of red pepper is attributed to the presence of red
coloured capsanthin (Lee et al., 2004). Plasma treatment did not significantly change the
colour of pepper powder as compared with untreated samples (Kim ef al., 2014). In a later
study, while 90 min plasma treatment had no significant effect on black pepper seed; signifi-
cant colour changes due to the remote plasma treatment were observed for the red paprika
powder and crushed oregano, the effect was independent of the treatment time (Hertwig et
al., 2015). They concluded that green colour change in oregano was due to destruction of
chlorophyll. Grzegorzewski et al. (2011) studied the interactions of plasma reactive species
with secondary plant metabolites in lettuce. They suggested that the combined interac-
tions of argon and reactive oxygen species may lead to degradation of epidermal cells due
to accumulation of flavonoids and other compounds in vacuoles. According to Baier et al.
(2013), plasma exposure leads to a detrimental effect on tissue photosynthetic efficiency
by erosion of upper epidermis in the leaves. Lacombe ef al. (2015) treated berries with a
mixture of cold air plasma. Treatments longer than 90 s resulted in significant reductions
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in firmness and colour of anthocyanins. Cold plasma produced bluer surface colour on the
berry fruits, which indicated that treatment does not bleach the fruit despite the significant
loss in anthocyanins after 90 s. Divergent results were obtained after argon plasma treatment
on the content of anthocyanins. According to Matan et al. (2015) radio frequency induced
argon plasma did not affect total phenolic content of fresh dragon fruit, while plasma treated
sour cherry juice at optimized plasma conditions had higher anthocyanin (34%) and phe-
nolic acid (15%) content as compared to pasteurized and untreated juice (Garofulic et al.,
2015). Misra et al. (2014a,b) evaluated the quality parameters of colour, firmness, pH and
weight loss of cherry tomatoes and strawberries after dielectric barrier discharge air plasma
and observed no adverse effects.

The most important enzymes involved in quality of fruits and vegetable products are
lipoxygenase, hydrolylic enzymes, peroxidase, and polyphenoloxidase. Studies evaluating
the efficacy of plasma on the enzymatic inactivation in fruits and vegetables are scarce.

Surowsky et al. (2014) showed that argon and oxygen mixture plasma was capable of

reducing the activity of both polyphenoloxidase and peroxidase enzymes, which are critical
for the control of colour attributes of apple cider. The activity of polyphenoloxidase was
reduced by about 90% after a treatment time of 180 s. Peroxidase was more stable and was
reduced by about 85% after 240s. Pankaj et al. (2013) demonstrated the applicability of
in-package cold plasma technology as a means to inactivate of tomato peroxidase enzyme at
30, 40 and SOKV, for up to S min of dielectric barrier discharge generated air plasma treat-
ment, and with reduction in enzyme activity, improved quality of the fruits have been noted.
Takai et al. (2012) studied the helium plasma and a mixture of nitrogen and oxygen plasma
systems on egg white lysozyme. They reported a decrease in the lysozyme activity, possibly
due to changes in the side chains of amino acids and secondary structure of the enzymes
(Takai et al., 2012).

The number of studies on the evaluation of organoleptic properties of plasma treated
food products is limited. Basaran et al. (2008) investigated the organoleptic properties
of nuts following surface treatment by SF, and air gasses. The results obtained from the
sensory panels led to the conclusion that the quality attributes (odour, appearance, texture,
and overall acceptance) of nuts treated with 20 min air gases or SF, plasma did not differ
significantly from the untreated samples. When organoleptic properties of brown rice cereal
were evaluated an odour like boiled rice was detected after an argon plasma exposure time of
25 min, and product was rejected by the consumer panelists (Suhem et al., 2013).

Conclusions

Owing to the implications of mycotoxins for human health and farm ecology, the manage-
ment of fungal invasion of agricultural commodities is a serious agronomic problem. There
is crucial need to eliminate mycotoxin-producing fungi and mycotoxins in order to improve
food/feed safety, prevent economic losses, and recover contaminated products as much
as possible. Plasma presents a residue-free, harmless, eco-friendly, fast, and a superficially
applicable approach to decontaminate fungal and mycotoxin contamination on thermally
labile organic or inorganic materials.
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Future trends

Human and animals are usually exposed to multiple mycotoxins in diet. It would be useful
to develop decontamination strategies, which aim at more than one mycotoxin. At present
the major concern of plasma application is the initial construction cost of equipment and
the appliance cost for per treatment of plasma systems. More research efforts must be
undertaken to evaluate affordable and sustainable batch or continuous plasma disinfection
systems that does not harm nutritional, sensory and other quality aspects of edible mate-
rials. Food processing technologies are complex and more than one approach is usually
accommodated for each processed food. The concept behind an integrated ‘hurdle’ effect is
to minimize risk of each phase of food processing. Plasma application combined with other
processing technologies may offer synergistic or additive effect to conventional methods
for conservation of food while safeguarding the quality properties. The challenge now is to
determine the effect of plasma combined technologies on the degradation of mycotoxins in
real food systems.
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Current Progress in the
Sterilization of Spores and
Vegetative Cells by Exposure
to Gas Plasma: Sterilization,
Disinfection and Antimicrobial
Activity

Hideharu Shintani

Abstract

In general, spores are more tolerant than vegetative cells against sterilization and disinfection.
Thus, spores are generally used as the biological indicator (BI), which should correspond to
the microorganism most tolerant to the targeted sterilization process (ISO 11138-1, ISO
14161). Geobacillus stearothermophilus ATCC 7953 was therefore selected as the BI for gas
plasma sterilization because its spores are the most tolerant of the tested microorganisms.
In this chapter, the relationship between BI and ISO, and their importance for validation of
sterilization are described in detail.

Introduction

Sterilization is the most stringent process to eliminate microorganisms (see Table 2.2)
(Shintani and McDonnell, 2011; Shintani ef al., 2007). In this chapter sterilization of spores
and vegetative cells is described (Box 8.1). According to Table 2.2, spores are the most
tolerant form of microorganisms. Prions are not microorganisms but rather are proteins,
so prions will not be discussed in this chapter although they are more difficult to eliminate
than spores (see Table 2.2). The killing of spores and other types of microorganisms includ-
ing vegetative cells is called sterilization (Shintani and McDonnell, 2011; Magureanu et al.,
2011). Disinfection refers to the process of killing vegetative cells, but not spores (Shintani
and McDonnell, 2011; Hoffmann et al,, 2013), and decontamination is the removal of
microorganisms by processes that do not necessarily kill the microorganisms (Shintani and
McDonneli, 2011).

Sterilization validation study using Bl or bioburden

Under real sterilization conditions, the real target of killing is the bioburden, not the BL. The
bioburden is defined the number and type of viable microorganisms on/in the products
(ISO 14161,1SO 11138-1,1SO 14937). Spores are relatively rare in the environment, and
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Box8.1 List of publications where sterilization of spores and vegetative cells is described

Shintani et al., 2010; Tseng et al., 2012; Shi et al., 2009; Roth et al., 2010: Hong et al.,

2009; Lee et al., 2006; Lassen et al., 2006; Lassen et al., 2005; Purevdorj et al., 2003;

Lerouge et al., 1999; Lerouge et al., 2000; Hury et al., 1998; Patil et al., 2014: Stapelmann

et al., 2013: Kawamura et al., 2012: Colas et al., 2012: Muranyi et al., 2010; Ayliffe et al.,

2000: Mols et al., 2013; Joaquin et al., 2009; Winter et al., 2013; Alfa et al., 1996; Baier
et al., 1992: Sakudo et al., 2013: Fricke et al., 2012; Brun et al., 2012; Kvam et al., 2012;

Liu et al., 2011; Brelles-Marino et al., 2012; Rederstorff et al., 2011; Hauser et al., 2011;

Rainer et al., 2010; Kinnari et al., 2010; Muranyi et al., 2008; Rowan et al., 2008; Muranyi

et al., 2007; Tessarolo et al., 2006; Yu et al., 2007; Peniston and Choi, 2007; Donohue
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Mishra et al., 2003; Trosite et al.; 2002; Brown et al., 2002; Pignata ef al., 2014; Mois et
al., 2013; Fernandez et al., 2013; Winter et al., 2011; Whittaker et al., 2004; Yamamoto,
1999; Hosseninzadeh et al., 2013; Vandervoort and Brelles-Marino, 2014; Nisshioka et
al., 2014; Kim et al., 2014; Yong et al., 2014; Lackmann and Bandow, 2014; Zhang et
al., 2014; Han et al., 2014; Al-Mariri et al., 2013; de Oliveira Cardoso Macedo, M et al.,
2013; Hosseinzadeh Colagar et al., 2013; Hernandez-Arias et al., 2012; Lee et al., 2011;
Fernandez et al., 2011; Kim et al., 2011; Yu et al., 2006; Ortoneda et al., 2008; Kim et
al., 2014; Harkin et al., 2001; Wang et al., 2014; Vetten et al., 2014; Delgado et al., 2014;
Justan et al., 2014; Wittenburg et al., 2014; Traba et al., 2013; Sakudo et al., 2013; Thi-
yagarajan et al., 2013; Pokorny et al., 2012; Lee and Chol, 2012; Deeilmann et al., 2008;
Hauser et al., 2008; Lieixa et al., 2008; Selcuk et al., 2008; Kang et al., 2014; Boscariol et
al., 2008; Tank et al., 2013; Southwood and Baxter, 1996; Zhao and Lubman, 1993; Chen
et al., 2010; Guo et al., 2008; McCullough and Bartfay, 2007; Sun et al., 2013; Nishioka
et al., 2014; Manolache ef al., 2001; Aerts et al., 2013; MacDonald et al., 2012; Yuan et
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and Georgescu, 2010; Schultz-Jensen et al., 2011; Wang et al., 2008; Kanemitsu et al.,
2005; Yuen et al., 2011; Isbary, 2013; Idlibi et al., 2013; Gatineau et al., 2012; Matthes
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the bioburden contaminating most products is generally composed of vegetative cells (Table
8.1). Typical examples of airborne, falling and adhesive microorganisms at a healthcare facil-
ity are presented in Tables 8.1-8.3 (Shintani et al., 2004, 2006). The CFU (colony-forming
unit) of airborne microorganisms was around 10 CFU/500 L (Shintani et al., 2004, 2006).
According to ISO 14161 and sterilization validation, reduction of 106 CFU of spores to a
sterility assurance level (SAL) of 1076 is required in sterilization validation in the case of
the overkill method in ISO 14161. In ISO 14161, an initial population approximating the
number of the bioburden or 10* CFU/ carrier is also approved (ISO 14161), but this will be
discussed in detail in Chapter 13.

The requirement of an initial population of 10 CFU/carrier and a SAL of 1076 in ISO
11138-1 is specifically for BI manufacturers carrying out validation studies. In contrast, an
initial population of 10° CFU/carrier is normally unnecessary for Bl users (ISO 14161), but
a SAL of 107 is definitely required for both BI manufacturers (ISO 11138-1) and BI users

Table 8.1 Airborne microorganisms identified in the Namiki Clinic dialysis room

Bacterial species CFU

Staphylococcus haemolyticus
Staphylococcus hominis
Staphylococcus schieiferi
Staphylococcus epidermidis
Staphylococcus intermedius
Staphylococcus saprophyticus
Staphylococcus capitis
Staphylococcus cohnii subsp. cohnii
Staphylococcus pasteuri
Staphylococcus vitulus
Streptococcus sanguinis
Micrococcus luteus
Micrococcus sedentarius
Micrococcus species

Bacillus licheniformis

Bacillus subtilis

Bacillus megaterium
Acinetobacter Iwoffii
Lactobacillus raffinolactis
Actinomyces pyogenes
Saccharomyces species
Corynebacterium genitalium

Gardnerella vaginalis

B T T~ IO ROV N N, . WG OO IFO (e T

Pantoea agglomerans

CFU, colony-forming units. Data for fungi, moulds and yeast other than Saccharomyces are
omitted.
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Table 8.2 Number of colonies after incubation at 30°C 1SO docume
Date sterilization, bu

Medium Equipment Jul9  Jul10 July 11 July 12 July 13 July 16 Total  Average Geobacillus stea
P —. atrophaeus AT(C

Geobacillus stea

SCDA A 3 16 9 15 16 19 78 4.3 ing to the defin
B 10 14 9 10 27 26 96 5.3 microorganism

C 10 11 11 10 18 3 63 3.5 philus ATCC 7¢

D 10 15 6 7 19 3 60 33 ‘ selected Bacillu.

E 9 21 6 5 9 27 77 4.3 no rationale for

SCDALP A 15 17 17 16 20 14 99 55 ; Gas plasma
B 23 17 12 21 15 21 109 6.1 atrophaeus ATC

c 23 12 16 17 10 21 99 55 1.4), indicating

D 15 11 13 13 27 12 99 5.5 or dose to redu

E 8 12 9 14 15 18 72 40 For example, bz

cating a D valuc
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SCDA: soybean casein digest agar sterilization bec

SCDLP: soybean casein digest agar lecithin polysorbate

Polysorbate indicates Tween® as trademark. negative metho

fraction negativ
must be a straig

Table 8.3 Number of colony-forming units (total of three samples) after incubation at 20°C the line is strajg]
Date 1072 must be co
-6 .
Medium Equipment 9July 10dJduly 11July 12July 13 July 16July Total Average to 107 can be s
cycle methods

SCDA A 2 23 7 9 14 10 65 3.6 .
carrier to a SAL
B 3 15 13 16 11 17 75 4.2 The D value
C 4 8 4 5 3 1 25 1.4 there is more th
D 3 12 4 12 20 7 58 3.2 In real worlc
E 8 8 4 6 12 6 44 2.4 but also primai
SCDALP A 5 13 5 11 17 10 51 34 spores are relati
B 14 11 11 16 7 24 83 4.6 of spores, indic:
c 11 3 6 18 7 8 53 29 exposure to ack
D 5 6 5 7 15 12 50 28 the population.
E 12 12 5 14 10 18 71 39 or multilayer p]
tamination in ty
20°C incubation in SCDA or SCDALP indicates fungi, yeast and mould cultivation. CFU of Geobac:
SCDA, soybean casein digest agar; SCDL, soybean casein digest agar lecithin polysorbate. achieve a SAL

Polysorbate indicates TweenF as trademark. e ..
for sterilization

tion of 10° spc
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I1SO documents do not specify a particular biological indicator (BI) for use in gas plasma
ilization, but according to our experiments (Shintani et al., 2007) and those of others,
eobacillus stearothermophilus ATCC 7983 is more tolerant to sterilization than Bacillus
atrophaeus ATCC 9372 (Lasser et al., 2006; Klaempfl et al., 2012), so we decided to use
seobacillus stearothermophilus ATCC 7953 as the BI for gas plasma sterilization. Accord-
ing to the definition of BI in ISO 11138-1, the most sterilization-resistant non-pathogenic
_microorganism should be selected as the BI. Therefore the use of Geobacillus stearothermo-
philus ATCC 7953 as the BI is appropriate (ISO 11138-1, ISO 14161). Deng et al. (2006)
selected Bacillus subtilis in place of Geobacillus stearothermophilus ATCC 7953, but there is
zio rationale for using this type of sporeformer as the BL

Gas plasma sterilization of Geobacillus stearothermophilus ATCC 7953 and Bacillus
atrophaeus ATCC 9372 spores resulted in linear survivor curves with no tailing (see Fig.
1.4), indicating first order inactivation kinetics. The D value (decimal reduction value, time
or dose to reduce 1 log) can be calculated from this straight survivor curve (ISO 14161).
For example, based on data presented in Fig. 1.4, it takes 7 min for a 6 log reduction, indi-
cating a D value of 1.2 min. It is better to avoid using the fraction negative procedures of
Stumbo-Murphy-Cochran and Sperman-Karber (ISO 14161) when utilizing gas plasma
sterilization because the survivor curve method results in a more precise D value. Fraction
negative methods require fewer numbers of BI, but they require a premise that from the
fraction negative range (SAL S to SAL 1072) to the initial population of 10® CFU/carrier
must be a straight line (Fig. 3.1). It is impossible to confirm experimentally whether or not
the line is straight for a SAL of less than 102 The reduction from 10 CFU/ carrier to SAL of
1072 must be confirmed experimentally to be linear and then reduction from a SAL of 10~
to 107 can be speculated to be linear (Fig. 3.1). The survivor curves of the overkill and half
cycle methods in ISO 14161 are required to be linear from an initial population of 10° CFU/
carrier to a SAL of 1075, This topic will be discussed in detail in Chapter 13.

The D value is only one per one microorganism. When a tailing phenomenon occurs,
there is more than one D value, which is a serious error (Rossi and Kylian, 2012).

In real world situations the real target of the sterilization process is not always spores,
but also primarily vegetative cells. The bioburden consists primarily of vegetative cells;
spores are relatively rare (Table 8.1). The D value of vegetative cells is ~1/50 to 1/200 that
of spores, indicating that we are required to carry out an unnecessarily excessive time/dose
exposure to achieve sterilization validation according to the authorities. In real situations,
the population of the bioburden is typically only a few CFU (10° CFU level) and clumping
or multilayer phenomena (Fig. 1.1) are rarely observed. In spite of this low level of con-
tamination in typical situations, in sterilization validation studies we are required to use 10°
CFU of Geobacillus stearothermophilus ATCC 7953 spores as an initial population and must
achieve a SAL of 107 as indicated in ISO 11138-1 and 14161. A SAL of 107 is required
for sterilization, disinfection, or decontamination, which is correct, but an initial popula-
tion of 10° spore/carrier is an excessive and unrealistic requirement. Such an excessive
requirement is likely to result in a failure to attain material and functional compatibility. As
already mentioned, it is quite important to attain both a SAL of 10-° and material/functional
compatibility in Chapter 3. To attain a SAL of 1076 from the initial population of 106 CFU/
carrier is a full 12 log reduction, which is required of BI manufacturers in validation studies
(ISO 11138-1). However, for the BI manufacturer, there is no requirement of simultane-
ous achievement of material/functional compatibility (ISO 11138-1) because there is no
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material being tested. Therefore, this means that the requirements for validation studies
carried out by Bl users (ISO 14161) and Bl manufacturers (ISO 11138-1 differ significantly.

The concept of an initial population of 105 CFU/carrier is the least visible number seen
as turbidity and a SAL of 107S is the closest number to zero calculated from stochastics (ISO
11137-1). In sterilization, disinfection and decontamination, a SAL of 107 may be essential,
but an initial population of 10° CFU of spores is not realistic. In real sterilization situations,
the bioburden is mostly vegetative cells (Table 8.1), the number of bioburden on the prod-
ucts is only a few, and no clumping (multilayer) is observed. If the initial population is a
few CFU (10° CFU level), then the requirement of a SAL of 107 means a 6 log reduction.
Therefore, a 6 log reduction is the actual decrease required for BI users. Most engineering
researchers mistake an initial population of 10¢ CFU/carrier to a 6 log reduction means 0
(total death) as the actual requirement, which is incorrect. A 6 log reduction of an initial
population of 10® CFU/carrier is 10°= 1, not zero. A SAL of 10° means there is a 63% pos-
sibility of survival (POS; see Fig. 3.1). The exact six log reduction required of the Bl user is
from an initial population of 10° CFU (bioburden level) to a SAL of 107%. This is the real six
log reduction required of BI users.

A 6log reduction may be more realistic, but there is no commercially available 10° to 10>
CFU/carrier BL. Commercially available Bls are from 10° CFU/ carrier, which are utilized in
the combined BI/bioburden method in sterilization validation (ISO 14161). The combined
BI/bioburden method can be used with an initial population of Bl approximately equivalent
in number to that of the bioburden, but this concentration of Bl is not commercially avail-
able and must be self-made. When the Bl is made by the user, this requires that ISO 11138-1
must be followed, as the Bl user is temporarily regarded as the B manufacturer in this case.
In place of using the bioburden number of BI, a commercially available BI with > 10* CFU/
carrier is approved for use in sterilization validation according to ISO 14161. For example,
when 10* CFU/carrier as an initial population was used and attained SAL of 1075, a 9 log
reduction is required (ISO 14161). However, many inspectors do not know these alterna-
tive requirements, and mistakenly assume that 10° CFU/ carrier must be used as the initial
population. Therefore, the level of 10% CEU/ carrier is unchanged due to this misconception
and it remains the most commercially popular BL It is correct for the Bl manufacturer to use
an initial population of 10® CFU/carrier in validation studies as described in ISO 11138-1,
not for Bl users. B users do not need to obey ISO 11138-1 unless they are making their own
BI; rather, they must obey ISO 14161. In ISO 14161 the absolute bioburden method and
combined BI/bioburden method are described. These methods will be described in detail
in Chapter 13.

According to our experiments (Shintani et al., 2004, 2006), airborne microorganisms
at a healthcare facility were present at 10-20 CFU/SOOL (Tables 8.1-8.3), indicating just
a few CFU of falling microorganisms or a few CFU of adhesive microorganisms. Adhesive
microorganisms are equal in concept to the bioburden. Even in the hospital environment,
for example the dialysis room, the bioburden is a few CFU; production facilities must have

strict controls to prevent contamination and there is no possibility that products will be
contaminated with 10% CFU spore/carrier. Therefore, we request the authorities to revise

the requirements such that they resemble the real world situation and consider that a 1
CFU/ carrier requirement as an initial population is unnecessary for BI users (Healthcar
product companies, etc.).
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Difference of spore appearance after sterilization using several

sorts of gases

In the current study of gas plasma sterilization, several types of gases are used. Typical gases
are nitrogen, oxygen, argon, helium, air and so on. Oxygen gas plasma causes significant
etching and shrinkage (Rossi et al., 2008; Rossi and Kylian, 2012), so material/functional
compatibility is difficult to attain with oxygen gas plasma. This means that oxygen gas plasma
sterilization is not an appropriate procedure for practical use. Nitrogen, argon and helium do
not produce any change in appearance after sterilization (Rossi ef al., 2008; Lerouge et al.,
2000), but it is not easy to attain a SAL of 10~ in a short period. In order to avoid material
deterioration and to attain a SAL of 10 in a relatively short period, a mixture of nitrogen
and oxygen (4:1v:v) is generally used in European countries. With a 20% of oxygen mixture,
some etching is observed but it is not significant and does not cause material incompatibil-
ity, so in European countries, a 4:1 (v:v) mixture of oxygen and nitrogen is most popular.
Nitrogen can be replaced with argon or helium, which are more expensive gases, so from
an economical standpoint, nitrogen may be most appropriate. Nitrogen, argon and helium
have the same efficiency and results of the spore appearance are identical (Rossi et al., 2008;
Lerouge et al.,, 2000).

Preparation of survivor curve

Methods for the preparation of survivor curves can be found in ISO 11138-1 Normative
Annex B, and those for retrieval of spores or bioburden from carrier material or from
products can be found in ISO 11737-1. A detailed description can be found in Chapter
13. To prepare survivor curves, 10-fold dilutions must be repeated several times to attain
30-300 CFU/plate (ISO 11138-1); soybean casein digest agar (SCDA) plates are used
(ISO 11737-1). In contrast, soybean casein digest broth (SCDB) can be used and success-
ful sterilization can be determined based on the turbidity and change of colour of chemical
indicator (CI). However, when using SCDB, colonies cannot be counted, so survivor curves
cannot be generated. Due to the presence of the CI, a colour change of SCDB medium indi-
cates that some spores survived and produced organic acids via the TCA cycle (tricarboxylic
acid cycle, citricacid cycle) and these organic acids, primarily citric acid, lower the pH of the
broth. However, it is important to note that Cls are not approved for use in validation stud-
ies (ISO 11138-1 and ISO 14161), so the use of SCDB for sterilization validation is invalid.

Conclusion

Use of a BI with an initial population of 10® CFU/carrier is not correct for BI users because
this is a requirement in ISO 11138-1 for BI manufacturers carrying out validation studies,
and Bl users must obey ISO 14161, which describes other methods with different require-
ments.

A SAL of 107 must be obtained in all sterilization procedures without exception. For
this purpose, any tailing phenomenon in the survivor curve must be avoided. The reason for
tailing is due to clumping of the BI (see Fig. 1.1), so BI free from clumping must be used for
gas plasma sterilization (Fig. 1.2). As the penetration depth of gas plasma is quite shallow
(10-20nm), gas plasma sterilization can often result in tailing. BI free from clumping is
therefore absolutely required; for this purpose the author recommends BI from Merck Co.
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Ltd. As an example, data in Fig. 1.4 were obtained using Merck BI (Fig. 1.2, free from clump-
ing), and no tailing was observed. Purchased BI must be observed by scanning electron
microscopy (SEM) to be free from clumping by the BI user. This is the user’s responsibility
even if it is not described in ISO 14161.

For gas plasma sterilization, the recommended Bl to use is Geobacillus stearothermophilus
ATCC 7953, but the spores of this organism are not defined as the official B in any ISO
documents in ISO TC 198. According to the author’s experiments, Geobacillus stearother-
mophilus ATCC 7953 shows the highest tolerance to gas plasma sterilization; therefore, it is
appropriate for use as the BI for gas plasma sterilization because the BI should be the most
sterilization—tolerant non-pathogenic microorganism available. Based on this definition,
Geobacillus stearothermophilus ATCC 7953 was selected as the BI for gas plasma steriliza-
tion. To compare the D value data among published studies it is necessary to use an identical
BI from the same manufacturer if possible, because variations in the populations and D
values of BI can be significant (Shintani and Akers, 2000; Shintani et al., 2000; Shintani,
1996 1997). In ISO 1138-1, the approved variation range of the population is -50 to +300%
and that of the D value is 1.5-2.5 min or 2.5-3.5 min. The actual variations are beyond this
range (Shintani and Akers, 2000; Shintani, et al., 2000; Shintani, 1996, 1997). Details will
be discussed in Chapter 13.

Oxygen gas plasma causes significant shrinkage after sterilization, indicating that mate-
rial compatibility is difficult to attain when using oxygen gas plasma. In place of oxygen, air
gas plasma, which can easily attain a SAL of 10~° and material/functional compatibility, is
popular in European countries. Nitrogen, argon or helium gas plasma can also be used to
attain both a SAL of 1076 and material/functional compatibility. The problem with the use
of these gases is the high gas prices.
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Current Progress in Advanced
Research into the Inactivation of
Fungi and Yeasts by Gas Plasma

Gyungsoon Park

Abstract

Recently, the risk level of fungi has been increased in human health, food safety, agriculture,
and ecosystem. Efficient, eco-friendly, and long-lasting control tools for fungal diseases and
contaminants are needed more than ever, and plasma has been explored as a candidate tool
satisfying these criteria. In this chapter, studies on antifungal activity of plasma are summa-
rized. Numerous studies have demonstrated that plasma treatment can efficiently inactivate
fungal spores and disinfect human tissues, paper, fabrics, crop seeds, plant leaves, and foods.
Plasma generated reactive species as possible fungicidal factors, may destroy or degenerate
fungal cell wall and consecutively damage cell membrane and internal components. How-
ever, more experimental studies, particularly in vivo, examining antifungal effects of plasma
are still required for proving the potentiality of plasma in fungal disease control. In addi-
tion, mechanisms of fungal sterilization by plasma should be elucidated in order to produce
useful information applicable to optimization of plasma sterilization technology.

Introduction

Many yeast like and filamentous fungi cause serious diseases in human, animals and plants,
and contaminate air, materials and foods. Fungal diseases have been relatively infrequent
in human compared to bacterial diseases but their outcomes are much more devastating. A
recent review about emerging fungal threats demonstrates that disastrous fungal diseases
in nature and managed landscapes have increased in number during past two decades, and
recently caused extinction of some wild species and imperilled food security (Fisher et al.,
2012). The level of fungal threats may be increasing in modern society as a result of human
activity modifying natural environments, which provokes emergence of new fungal strains
(Fisher et al.,2012). In addition, there are many opportunistic fungal pathogens that are able
to develop virulent infectious diseases depending on environmental changes. For example,
the fungi Pseudallescheria boydii and Scedosporium prolificans became capable of infecting
the pulmonary and central nervous systems in near-drowning people during the Asian and
Japanese earthquakes and tsunamis (Nakamura et al,, 2011). After Hurricanes Katrina and
Rita in New Orleans, Trichoderma, a benign fungus, together with Aspergillus, Penicillium,
Paecilomyces species were widespread in flooded home, producing spore and endotoxins
that were harmful to human health (Chew et al.,, 2006; Rao et al., 2007). Many weak and
non-pathogenic fungi have been recently emerged as major infectious agents for plant fungal
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disease epidemics as shown in destruction of wood population by Phytophthora ramorum in
California and the UK (Grunwald et al., 2008).

Control tools for fungal diseases and contaminants such as antifungal drugs, fungicides,
heat treatment, irradiation, and biocontrol have been developed. However, several problems
related to efficiency, safety and resistance are also appeared following frequent use of these
control tools. Recently, many researchers have focused on multidisciplinary approach in the
development of control strategies for fungal diseases and contaminants. Plasma technology
developed on the multi-disciplinary basis can be a potential control method for fungal dis-
eases and contaminants. Biological impact of plasma has been well demonstrated in the area
of medicine and agriculture, and antimicrobial effects of plasma in particular are a subject
of active research (Fridman et al., 2008; Ito ef al., 2007). In this chapter, research performed
during last decade about inactivation of yeast like and filamentous fungi by plasma has been
summarized and future research directions are discussed.

Fungal pathogens and human life

Fungal pathogens have a great impact on human life as agents causing serious diseases of ani-
mals, plants, and humans (Thornton and Wills, 2015). Fungal pathogens threaten human
and animal health and cause significant economic losses in agriculture. Differently from
bacteria (prokaryotes), fungi are included in eukaryotes and many are multicellular. There
are yeast type and filamentous fungi. Many yeast type fungi are opportunistic pathogens to
human and animals, and majority of plant diseases is caused by filamentous fungi.

Fungal pathogens are well known to cause serious diseases in immunocompromised
humans and animal live stocks (Wilkinson, 1988). According to recent statistics, the number
of life-threatening infections by opportunisticinvasive and endemic dimorphic fungi exceeds
two million cases per year (Brown ef al., 2012). Although there are dimorphic fungi such
as Blastomyces, Histoplasma, Coccidioides and Paracoccidioides that can infect healthy indi-
viduals, most diseases caused by human fungal pathogens are predominantly opportunistic,
attacking a weakened immune system (Pfaller and Diekema, 2005). Candida and Aspergillus
species are well-known opportunistic fungal pathogens (Bennett, 2010; Odds, 1987). These
species cause skin-related and respiratory diseases, and their impacts are various ranging
from chronic infection to fatal diseases. Recently, fungal species causing diseases in both
healthy and immunocompromised humans and animals such as Pseudallescheria boydii and
Scedosporium prolificans have been emerged (Cortez et al.,, 2008). In addition, host ranges
of some fungal pathogens become broadened. Aspergillus sydowii causing aspergillosis can
also infect the sea fan coral, and E. solani and Scedosporium species can attack other wild and
domestic animals (Rypien et al., 2008).

Mycotoxins produced by fungi can be an another serious health-threatening factor to
both human and animals (Bennett and Klich, 2003). Species like Alternaria, Aspergillus, Cla-
dosporium, Fusarium, Penicillium, and Stachybotrys are well-known producers of mycotoxins
and allergens (Hedayati et al., 2007). These mycotoxins and allergens can disturb respira-
tory tracts and immune responses, and contaminate foods (Hedayati ef al., 2007).

Plant fungal pathogens have been known as a major threat to food security and agricul-
ture. Pathogens destroy about al least 125 million tones of major food crops (rice, wheat,
maize, potato, soybean) every year and contribution by fungal pathogens may be significant
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(Fisher et al., 2012). The economic loss caused by fungal infections in the global produc-
tion of rice, wheat, and maize is about $60 billion per year (Fisher et al., 2012). The rice
blast fungus, Magnaporthe grisea, causes 10~35% reduction in rice crops annually, and the
emerging virulent strain of wheat stem rust fungus, Puccinia graminis Ug99, has brought
almost 100% loss in crop production (Singh et al., 2011; Wilson and Talbot, 2009). Many
phytopathogenic fungi infect plants through specialized infection structures, and by secret-
ing virulence factors and effectors that modulate host defences (Wilson and Talbot, 2009).

Control strategies and methodologies for fungal diseases have mainly focused on chemi-
cal based approach. Although biocontrol and irradiation based control tools are recently
developed, majority of fungal prevention and eradication in practice has pretty much
depended on use of antifungal chemicals and fungicides. Various antifungal agents for
human fungal pathogens are developed. Amphotericin B, echinocandins (anidulafungin,
caspofungin, micafungin), and azoles (itraconazole, posaconazole, voriconazole) have been
actively used in the clinical treatments as antifungal therapy (Donnelly, 2013). However,
efficiency is dramatically decreased for invasive fungal infections. For control of plant fungal
diseases, fungicides have been frequently used. Fungicides are classified as specific or multi-
sites based on target(s), and half of total fungicides used in practice are included in sterol
demethylation inhibitors (DMIs) and quinone outside inhibitors (Qols) (Hirooka and
Ishii, 2013). Worldwide consumption of fungicides has been increasing by 6.5% annually
since 1999 (Hirooka and Ishii, 2013).

In spite of frequent utilization, antifungal agents provoke several problems such as drug
resistance and inactivation efficiency. After azole resistant Candida species has emerged,
echinocandin is applied to eradicate azole resistant strains but recently level of resistance
to both azole and echinocandin is elevated (Shor and Perlin, 2015). Fungicide resistance
in phytopathogenic fungi has been continuously increased since the early 1970s and threat-
ened the crop yields as well as quality (Ishii, 2006). For example, Qol fungicides (strobilurin
fungicides), a best selling fungicide in the world, inhibit fungal respiration by attacking the
Qo site of cytochrome bcl enzyme complex. Since site-specific inhibitors can easily induce
resistance in fungal pathogens, fungal resistance to QoI has emerged worldwide (Ishii,
2006). MBI-D fungicides in the control of rice blast fungus Magnaporthe grisea have no sign
for resistance for over 30 years but a recent emergence of resistant strain in the field has
caused decrease in fungicide efficacy (Sawada et al., 2004).

Inactivation of fungal pathogens that are important to human
health by plasma
Since chemical based control of fungal diseases has several problems, alternative methods
and technologies have been searched and developed. Atmospheric pressure non-thermal
plasma is known to inactivate microorganisms, and its application to eradicating microbial
infections and contaminations in medicine, agriculture, and food industry has been actively
explored. Sterilization using plasma has been mostly focused on bacterial inactivation and
fungal inactivation by plasma is relatively less investigated.

Application of plasma technology in the control of human health-related fungi has been
focused on inactivation of fungal spores that may be present in indoor air, in tissues, and on
materials (Table 9.1). Many studies have demonstrated antifungal activity of plasma using
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Table 9.1 Application of plasma in the control of fungal infections and contaminants related
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using AC/DC high-voltage power, and plasma jet can efficiently inactivate C. albicans cells
within several minutes (Korachi et al.,, 2009; Ohkawa ef al,, 2005, 2006; Sedghizadeh e al.,
2012; Xiong et al., 2010). Similar inactivation efficiency of plasma is also observed in con-
trolling resistant C. albicans present in a sealed package and associated with glass plate (Song
et al., 2012,2013). A recent study shows that plasma significantly reduces the viability of C.
albicans and A. fumigatus spores but human ocular cells and ex vivo corneas are not damaged
by treatment with same plasma dose (Brun et al,, 2012). This observation suggests a pos-
sibility of clinical application in which plasma can be used as an efficient tool to disinfect
ocular tissues.

Spores of fungi frequently discovered in indoor air, A. niger and P, citrinum, are considered
as a potential factor threatening human health. Plasma treatment is shown to dramatically
eradicate spores of A. niger and P, citrinum (Nojima et al., 2007; Ohkawa et al., 2006; Park et
al., 2003, 2004). Mycotoxins produced by fungi cause many health problems in human and
animals. Inactivation of mycotoxin by plasma has been demonstrated in a study in which
aflatoxin B1 (AFB1), deoxynivalenol (DON) and nivalenol (NIV) are completely removed
after 5 s microwave plasma treatment and cytotoxicity of plasma-treated mycotoxin was
significantly reduced (Park et al., 2007).

Selective inactivation of fungi by plasma without damage on associated tissues or mate-
rials has been also observed. Clinical isolates of fungal species, Trichophyton interdigitale,
Trichophyton rubrum, Microsporum canis, C. albicans, involved in dermatomycosis, were
poorly grown after plasma treatment and C. albicans exhibited the largest inactivation (Dae-
schlein et al.,, 2011). In addition, plasma treatment completely destroys reproductive fungal
structures of T. interdigitale in dandruff of patients with tinea pedis (Daeschlein et al., 2011).
This study suggests that plasma can be a suitable antifungal tool applicable to in vivo treat-
ment of skin infection. In several studies, plasma is found to efficiently remove fungal spores
contaminating papers and fabrics without damaging materials (Park et al., 2003, 2004, 2008;
Vrajova et al., 2008). This is a quite promising result for plasma to become more efficient and
eco-friendly sterilization tool than traditional sanitation methodology.

Although fungal pathogens and mycotoxins are efficiently inactivated by atmospheric
pressure plasma, mechanisms of plasma sterilization are still under active investigation.
Microscopic data from several studies indicate that both yeast (C. albicans) cells and fila-
mentous fungal spores after plasma treatment are crushed (Korachi et al., 2009; Ohkawa
et al., 2006; Park et al., 2003, 2008; Xiong et al., 2010). However, cell burst and tearing are
more often observed in yeast cells while shrinkage and wrinkling in filamentous fungal
spores (Korachi et al., 2009; Ohkawa et al., 2006; Park ef al., 2003, 2008; Xiong et al., 2010).
These results indicate that fungal cell wall and membrane are damaged and intracellular
components may also be affected. Morphological alteration and destruction of fungal cells
may be caused by plasma produced reactive oxygen and nitrogen species (ROS and RNS),
and ROS such as O radical and OH radical seem to play more critical role in antifungal
activity (Ohkawa et al., 2006; Song et al., 2012; Xiong et al., 2010). Besides reactive species,
UV emitted from plasma and plasma etching are also suggested as contributors to fungal
inactivation (Park ef al., 2003, 2004). A recent study has demonstrated that intracellular
ROS level elevated by plasma treatment is a critical element for plasma sterilization (Brun
et al,, 2012). Atomic hydrogen released by a novel plasma device can also reduce very effec-
tively fungal contaminants (Nojima ef al., 2007).
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Inactivation of fungal pathogens that are important in
agriculture and foods by plasma
Compared to medically important fungal pathogens, crop and food associated fungal path-
ogens have been less explored for their control by plasma. Plasma application in the control
of agricultural fungal contamination has been focused on inactivation of fungal spores in
vitro and disinfection of seeds, crops, and foods associated with fungi (Table 9.2). Spores
of Fusarium graminearum, Fusarium oxysporum, Penicillium digitatum, and Cladosporium
fulvum which are major fungal pathogens of wheat, tomato, and citrus have shown to be
effectively inactivated by atmospheric pressure non-thermal plasma in laboratory culture
condition (Iseki et al., 2010; Lu et al., 2014; Na et al.,, 2013). Spore inactivation efficiency
is highly dependent on plasma density, power, frequency, treatment time and fungal spe-
cies (Lu et al,, 2014; Na et al., 2013). Particularly, plasma jet with a relatively high plasma
density enable to completely kill resistant C. fulvum spores, and this suggests that plasma
can potentially control resistant fungal strains (Lu et al,, 2014). In a recent study using
Ascochyta pinodella and Fusarium culmorum, air plasma treatment is shown to be able to
inhibit mycelial growth and alter morphology of mycelia (Avramidis et al.,, 2010). An in
vitro study using fungal spores and host plant has demonstrated that plasma dose for killing
or inactivating fungal spores may be able to induce resistance in host plant (Panngom et
al., 2014).

As demonstrated in in vitro studies, plasma may be able to become a very efficient tool
for controlling fungal diseases in agriculture and food industry. Fungal contamination on
agricultural products can be a main cause for decreasing crop yield and threatening food

Table 9.2 Application of plasma in the control of fungal infections and contaminants related
to agriculture and foods

Association Fungal species  Plasma References
Spores P, digitatum Non-equilibrium plasma jet iseki et al. (2010)
F. graminearum  Microwave plasma Na et al. (2013)
F. oxysporum Microwave plasma Na et al. (2013)
F. oxysporum DBD microplasma Panngom et al. (2014)
Mycelia A. pinodella DBD plasma Avramidis et al. (2010)
F. culmorum DBD plasma Avramidis et al. (2010)
Nuts A. parasiticus Low-pressure plasma Basaran et al. (2008)
Seeds Aspergillus spp. Low-pressure plasma Selcuk et al. (2008)
Penicillium spp. Low-pressure plasma Selcuk et al. (2008)
C. fulvum Plasma jet Lu et al. (2014)
F. fujikuroi DBD plasma Jo et al. (2014)
R. solani Atmospheric pressure plasma, Nishioka et al. (2014)
low-pressure plasma
Wood A. pullulans Afterglows plasma Lecoq et al. (2013)

Red pepper powder
Infected leaf

A. flavus

Microwave plasma

Plasma jet

Kim et al. (2014)
Zhang et al. (2014)
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safety. Plant seeds and fruits are very vulnerable to fungal attack and their contamination
with fungi often results in dramatic economic losses. Seed sterilization by plasma has been
frequently examined. Basaran group has demonstrated that over 99% of grains and legume
seeds exhibit at least 3 log reduction in fungal load (Aspergillus and Penicillium) after a
15 min treatment with low pressure cold plasma using air and sulfur hexafluoride (SF)
as feeding gases, and there is no significant inhibition on seed germination (Selcuk et al.,
2008). Low pressure cold plasma using air and sulfur hexafluoride (SF,) has also reduced
the load of A. parasiticus associated with hazelnut, peanut, and pistachio nut, and SF plasma
is more efficient than air plasma (Basaran et al., 2008). In this study, a 50% reduction in total
aflatoxins (AFB1, AFB2, AFG1, and AFG2) produced by A. parasiticus is also observed by
treatment with air plasma for 20 min, while SF plasma reduced only 20% of total aflatoxin
(Basaran et al., 2008). Ar/O, Plasma jet can effectively prevent rotting of C. fulvum infected
tomato seeds (Lu ef al., 2014). Treatment with dielectric barrier discharge (DBD) plasma
for 10 min significantly reduces disease development in rice seeds infested with Gibberella
fujikuroi and no adverse effects on seed germination and growth are observed (Jo et al,,
2014). Brassicaceous seeds contaminated with Rhizoctonia solani are efficiently disinfected
through treatment with atmospheric pressure plasma or low pressure plasma (up to 99%
reduction in infected seed number) although seed germination is delayed by atmospheric
pressure plasma treatment (Nishioka et al., 2014). From these experimental data, it can be
suggested that plasma can become an efficient control tool for seed-borne fungal diseases
without dramatic damage on seed vitality.

Antifungal activity of plasma is also observed in the treatment of fungal associated plant
leaves, red pepper powder, and wood materials (Kim et al., 2014; Lecoq et al., 2013; Zhang
et al., 2014). Fungus infected spots on leaves of Philodendron. erubescens cv. Green Emerald
are recovered after direct treatment with plasma jet on leaf spot and recovery efficiency is
dependent on the size of black spots and the leaf age (Zhang et al., 2014). Microwave N,
plasma treatment reduces the number of active spores of Aspergillus flavus in red pepper
powder by more than 2 log scale within 20 min (Kim et al., 2014). Afterglows plasma can
assist grafting glycidyldimethyldodecylammonium chloride (GDDAC), a known fungicidal
chemical, on cellulose, which will provide antifungal properties to wood materials (Lecoq
etal., 2013).

The mechanism of inactivation of agriculture and food related fungi by plasma may not
be remarkably different from that mentioned in plasma sterilization of medically important
fungi. In most studies, fungal pathogens contaminating seeds and other agricultural prod-
ucts have been deactivated by plasma in open air condition and therefore reactive species
generated from plasma may interact more directly with fungal pathogens. Production of
diverse reactive species by using various feeding gases may enhance antifungal activity as
well demonstrated in the study using SF, gas (Basaran et al., 2008; Selcuk et al., 2008). From
studies to date, two interesting points about mechanisms of plasma sterilization on agricul-
tural products can be come out. First, low pressure plasma may be more efficient in seed
fungal sterilization than atmospheric pressure plasma as demonstrated in Basaran group’s
work (Basaran et al., 2008; Selcuk et al., 2008). Second, plasma may be able to efficiently
inactivate fungal pathogens infected inside leaf because plasma generated species can pass
through leaf stomata and damage oil vacuoles and cell membrane of fungi (Zhang et al.,
2014).
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Conclusion

Although the limited number of studies are available compared to bacterial sterilization,
studies about fungal sterilization have demonstrated that plasma can be a potential tool for
efficient inactivation and disinfection of both yeast like and filamentous fungi associated
with tissues, materials, air, crops, seeds, and foods. Since fungi have eukaryotic cell struc-
ture, interaction of plasma with fungal cells may be quite different from that with bacteria
which are prokaryotic cells. Thus, different plasma parameters may be applicable to achieve
the maximum sterilization efficiency for fungi. Various levels of antifungal activity of plasma
have been observed depending on electric power, feeding gases, treatment time, fungal
species, and associated environments in many studies. Control of these parameters may be
closely related to modulating the level of reactive species and ions generated by plasma, and
these plasma generated species may play very critical roles in fungal sterilization.

Future trends

A broad spectrum of biological effects produced by plasma have frequently been demon-
strated. Plasma is likely to become an alternative sterilization tool for fungal pathogens with
advantages over traditional disease control methods. In order to be an alternative antifungal
tool, tremendous experimental studies in vivo are still needed and optimization of plasma
sources for maximum efficiency should be achieved. Since fungal spores are found in
various environments, finding optimal conditions for plasma application in each case is very
critical for efficient control of fungal diseases and contaminants. In addition, mechanisms
for plasma fungal inactivation should be actively investigated to obtain useful information in
improving plasma sterilization technology.
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Current Progress in Advanced
Research into the Inactivation
of Viruses by Gas Plasma:
Influenza Virus Inactivation by
Nitrogen Gas Plasma

Akikazu Sakudo

Abstract

Recently, the potential of gas plasma technology for disinfection and sterilization has been
exploited. The effective inactivation of bacteria, fungi as well as toxins by gas plasma exem-
plifies the broad application of this technology. However, information concerning the effect
of gas plasma on viruses and their biomolecules, as well its mechanism of action, remain
somewhat limited. In this chapter, we focus on the inactivation of viruses by gas plasma,
together with our recent investigation on inactivation of influenza viruses by nitrogen gas
plasma, which was produced by applying a short high-voltage pulse using a static induction
(SI) thyristor power supply.

Introduction
Iatrogenic diseases caused by infection through contact with medical devices are thought to
be a major contributor to hospital-acquired infections (Fraise et al., 2013). Consequently,
the appropriate sterilization of medical devices is crucial for decreasing the incidence of
fatrogenic diseases. However, medical devices and instruments are often not resistant to
heat treatment such as autoclaving and dry-heating (McCombs and Darby, 2010). Moreo-
ver, alternative sterilization techniques involving the generation of y-rays or electron beams
require expensive facilities and are not appropriate for routine use (Silindir and Ozer,2012).
Ethylene oxide gas (EOG) can be used to sterilize heat-sensitive medical instruments,
but this approach has limited application because the gas is both toxic and carcinogenic
(Greim, 2003). Recently, sterilization using hydrogen peroxide gas or its gas plasma was
proposed, although this technique is ineffective against endotoxins and lipopolysaccharides
(LPSs) (Tamazawa and Hashibuchi, 2004; Shintani et al.,, 2007). Indeed, residual amounts
of endotoxin derived from bacteria may cause symptoms including fever (Blattais, 2006).
By contrast, there is growing evidence to suggest that gas plasma technology is a valuable
method for both disinfection and sterilization.

Recently, the number of studies utilizing plasma technology has been increasing
(Machala et al., 2012). Diverse applications of gas plasma have been reported in the fields of
medical and clinical science (Terrier et al., 2009; Isbary et al., 2013; Hoffmann et al.,, 2013;
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Sakudo et al., 2014), dentistry (Hoffmann et al., 2013 ), materials processing (Abuzairi et al.,
2015; Law et al., 2012), material analysis (Sato et al., 2014), surface modification (Sakudo
et al., 2015a,b; Saraswati et al., 2013), light sources (Sato et al., 2014; Jinno et al., 2006),
and microplasma chips (Topala and Nagatsu, 2015), as well as the food industry (Banu
et al.,, 2012; Pankaj et al., 2014; Maeda et al., 2015; Afshari and Hosseini, 2014). Among
them, over the past 20 years, many researchers have shown an interest in a disinfection
technique based on gas plasma technology (Laroussi, 1996; Laroussi et al., 2012; Fridman
and Friedman, 2013). Recently, Escherichia coli, Bacillus species, Salmonella, Staphylococcus
aureus, Enterococcus faecalis, and Penicillium digitatum, in addition to bacterial spores such
as Geobacillus stearothermophilus, have been shown to be inactivated by gas plasma treat-
ment (Niemira, 2012; Klampfl et al., 2012; Sung et al., 2013; Tian et al., 2010; Iseki et al,
2010), indicating that gas plasma technology is highly effective for disinfecting bacteria.
However, there have only been a small number of studies on the inactivation of viruses such
as influenza virus (Sakudo et al., 2013a), adenovirus (Zimmermann et al., 2011), and feline
calicivirus (Aboubakr et al., 2015).

As mentioned above, the effective inactivation of bacteria and fungi as well as toxins by
gas plasma has been demonstrated, suggesting the broad application of this technology.
However, information concerning the effect of gas plasma on viruses and their biomol-
ecules, as well its mechanism of action, remain somewhat limited. In this chapter, we focus
on the inactivation of viruses by gas plasma, together with our recent investigation on the
inactivation of influenza viruses by nitrogen gas plasma.

Viruses and influenza virus
Viruses are divided into two types; enveloped and non-enveloped viruses (Fig. 10.1). Envel-
oped viruses have a lipid membrane on their outer surface, whereas non-enveloped viruses
lack such a membrane. Currently, most studies on virus inactivation by gas plasma have
been performed using bacteriophages, which specifically infect bacterial cells and do not
cause iatrogenic infections.

Influenza viruses are enveloped viruses. Human influenza viruses are a major causative

Figure 10.1 Animal viruses and bacteriophages. Schematic structures of A bacteriophage (A),
non-enveloped virus (B) and enveloped virus (C) are shown. Bacteriophages infect bacteria.
Animal viruses infect animal cells and can be divided into non-enveloped and enveloped
viruses. Non-enveloped animal viruses includes adenovirus, norovirus and rotavirus, while
animal enveloped viruses includes influenza virus, human immunodeficiency virus (HIV) and
respiratory syncytial virus (RSV). To date, investigations into the plasma sterilization of viruses
have mainly focused on bacteriophages, while there are a limited number of studies examining
animal viruses.
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agent of severe upper respiratory tract infections in infants, young children and the elderly.
It is estimated that infection with influenza virus results in 3 to 5 million cases of severe
illness and 250,000 to 500,000 deaths per year worldwide (WHO, 2003). As such, inactiva-
tion of influenza virus is a major objective for improving human health. Recently, we have
investigated whether gas plasma can be used for the efficient sterilization or disinfection
of influenza viruses. Specifically, we investigated the virucidal effect of nitrogen gas plasma
treatment as well as any associated biochemical changes to the components of the influenza
virus. Next, I will introduce these recent studies using the nitrogen gas plasma instrument.

Inactivation of influenza virus by nitrogen gas plasma
Recently, the effect of nitrogen gas plasma on viruses has been studied by several research
groups including ourselves. Here, we review our recent studies on nitrogen gas plasma treat-
ment of influenza virus, as a representative enveloped virus. In addition, the mechanisms by
which the influenza virus is inactivated by nitrogen gas plasma is discussed.

We have used nitrogen gas plasma produced by applying a short high-voltage pulse using
a static induction (SI) thyristor power supply (Fig. 10.2). The instrument is referred to as
BLP-TES. Influenza virus-infected allantoic fluid was spotted onto a cover glass and sub-
jected to nitrogen gas plasma treatment. The appearance of the spots was unchanged after
nitrogen gas plasma treatment for up to 15 min (Fig, 10.3).

To further investigate the change induced by nitrogen gas plasma, the treated influenza
virus was analysed using a number of different assays. A bioassay using chicken embryonated
eggs demonstrated that nitrogen gas plasma treated influenza virus could not proliferate,
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Figure 10.2 Nitrogen gas plasma instrument BLI-TE. (A) Photograph of the nitrogen gas
plasma instrument (BLP-TES). BLP-TES produces nitrogen gas plasma by means of a fast
high-voltage pulse applied using a static induction (Sl) thyristor power supply. A cathode
electrode (earth electrode) is placed between the anode electrodes (high-voltage electrode).
(B) Schematic of the nitrogen gas plasma instrument. The distance between the high-voltage
electrode and the earth electrode is 50mm. The procedure for generating the nitrogen gas
plasma was as follows. First, the chamber box containing the sample was decompressed and
degassed, and then nitrogen gas (99.9995%, Okano, Okinawa, Japan) was introduced. The
flow rate of nitrogen gas was 10 I/min. The pressure in the box was maintained at about 0.5
atmospheres during the discharge at 1.5 kpps (kilopulse per second). Modified from Figure 1
in Sakudo et al. (2014).
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Omin
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Figure 10.3 No change in the appearance of allantoic fluid infected with influenza virus after
nitrogen gas plasma treatment. Influenza A virus (A/PR/8/34)-infected allantoic fluid was
spotted onto a cover glass and air-dried. The cover glass was then treated with nitrogen gas
plasma using the BLP-TES instrument at 1.5 kpps for 15 min. The appearance of the spots
was unaffected after nitrogen gas plasma treatment for up to 15 min by comparison with the
untreated spots (0 min).

suggesting inactivation of the virus during treatment (Fig. 10.4). Scanning electron micros-
copy (SEM) analysis showed aggregation and fusion of viruses in the nitrogen gas plasma
treated samples (Fig. 10.5). Moreover, nitrogen gas plasma treatment of influenza A and B
viruses was shown to induce the degradation of viral proteins, including NP, HA and NA,
as shown by immunochromatography for influenza virus nucleoprotein (NP), Coomassie
brilliant blue staining for proteins, enzyme-linked immunosorbent assay (ELISA) for influ-
enza virus NP, haemagglutination assay for haemagglutinin (HA), and Western blotting for
influenza virus NP and neuraminidase (NA). Polymerase chain reaction (PCR) analysis
suggested that the viral RNA genome was damaged and may be oxidized by nitrogen gas
plasma treatment (Fig. 10.6). Fourier transform infrared (FT-IR) spectroscopy analysis
indicated that nitrogen gas plasma treatment induces changes to the lipids, suggesting that

Untreated

Gas
plasma
treated

Figure 10.4 Inactivation of influenza A virus by nitrogen gas plasma occurs within 5 min.
A 20 pl aliquot of allantoic fluid [3x10' TCID,, (tissue culture infectious dose 50) per ml]
infected with influenza A virus (A/PR/8/34) was spotted and air-dried onto a cover glass and
then treated with nitrogen gas plasma (1.5 kpps) for 5 min using BLP-TES. Each sample was
recovered with 20l of pure water (Otsuka Pharmaceuticals, Co., Tokyo, Japan) and injected
into 11-day-old chicken embryonated eggs. Specifically, six eggs were injected with recovered
solution from the nitrogen gas plasma-treated allantoic fluid, while a further six eggs were
injected with recovered solution from untreated allantoic fluid. After incubation of the eggs
for 48 h at 37°C, the presence of influenza virus was analysed by immunochromatography for
influenza virus nucleoprotein (NP) (ESPRINE influenza A&B-N; Fujirebio inc., Tokyo, Japan). The
result of these experiments indicated that nitrogen gas plasma treatment (1.5 kpps) effectively
inactivated influenza virus within 5 min. A and B indicate the lines for NP of influenza A virus
and influenza B virus, respectively. The reference line (r) is also indicated. Modified from Figure
2 in Sakudo et al. (2013).
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Untreated Gas plasma treated

Figure 10.5 Morphological changes to influenza viruses treated with nitrogen gas plasma
were observed by scanning electron microscopy (SEM). Influenza A virus (A/PR/8/34)
in allantoic fluid was air-dried on a cover glass and treated for 5 min with an nitrogen gas
plasma (1.5 kpps) generated using a BLP-TES, and then fixed with 2% glutaraldehyde/0.1 M
phosphate buffer (pH 7.4). The cover glasses were then treated with 2% osmium tetroxide,
dehydrated in ethanol, dried to the critical point and finally coated with osmium plasma ions.
Virus morphology was analysed by SEM at 5kV using a magnification of x 100,000 with a
JSM-8320F instrument (JEOL Ltd., Tokyo, Japan). Untreated influenza A viruses displayed
a rounded shape with fibrous connections, whereas nitrogen gas plasma-treated influenza A
viruses had a shrunken appearance and lacked any associated fibres. Reproduced from Figure
3 in Sakudo et al. (2014).

the viral envelope and its associated lipids become oxidized. In addition, viral proteins were
nitrated after nitrogen gas plasma treatment (Fig. 10.7). Based on molecular weight informa-
tion, the main viral protein to be nitrated appears to be NA. In terms of the mechanism by
which nitrogen gas plasma inactivates influenza viruses, there are thought to be at least three
main factors. These inactivation factors include heat, longwave ultraviolet A (UV-A), and
oxidative stress (i.e. exposure to hydrogen peroxide-like molecules). Further calculation of
the contribution ratio of each of these factors on the inactivation of influenza virus suggests
that oxidative stress is the main mechanism of inactivation. However, it remains unclear
how other inactivation factors contribute to the observed virucidal effect. Additional oxida-
tive stress factors, such as the generation of reactive chemical products other than hydrogen
peroxide, may be involved in viral inactivation. Further studies are required to identify these
potential inactivation factors.

Conclusion and future perspectives

In conclusion, the inactivation effect of gas plasma on viruses has been confirmed. Our
analysis shows that reactive chemical products generated by gas plasma, such as hydrogen
peroxide, induce oxidative stress and this is chiefly responsible for the viral inactivation.
Currently, gas plasma research has largely focused on potential medical applications such
as sterilization, disinfection and antisepsis, including the inactivation of influenza viruses.
However, recently, the potential application of gas plasma treatment in the agricultural
sector is also being investigated. Although information concerning the effect of gas plasma
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Figure 10.6 Nitrogen gas plasma generates long wave ultraviolet A (UV-A) and induces
damage to viral genomic RNA of influenza virus. (A) An aliquot (20 ul) of influenza A virus (A/
PR/8/34)-infected allantoic fluid was dropped onto a cover glass and air-dried. The dried spot
was then treated with nitrogen gas plasma (1.5 kpps) for the indicated times using BLP-TES.
The viral genomic RNA of the influenza virus was subsequently extracted and subjected to
reverse transcription in order to generate complementary DNA (cDNA). Damage to the genomic
RNA of influenza virus induced by the nitrogen gas plasma treatment was analysed using the
polymerase chain reaction (PCR). Namely, PCR was performed using cDNAs as template and
specific sets of primers for matrix protein (M1), non-structural protein (NS), haemagglutinin (HA)
and neuraminidase (NA) of influenza virus. PCR was carried out using the following primers;
MA1-F: 5'-CAG AGA CTT GAA GAT GTC TTT GCT G-3"; MA1-R: GCTCTG TCCATG TTATTT
GGA TC-3"; HA-F: 5’-AGC AAA AGC AGG GGA AAA TAA -3’; HA-R: 5'-GCT ATT TCT GGG
GTG AAT CT-3’; NA-F: 5'-TTG CTT GGT CGG CAA GTG C-3’; NA-R: 5'-CCA GTC CAC CCA
TTT GGA TCC-3';;NS-F: 5'-AAG GGC TTT CAC CGA AGA GG-3’; NS-R: 5’-CCC ATT CTC
ATT ACT GCT TC-3'. The temperature cycling conditions used for the PCR were: 95°C for 5
min followed by 25 cycles of 95°C for 1 min, 55°C for 1 min and 72°C for 1 min with one final
cycle of 72°C for 10 min. The intensity of the resulting amplified bands was semi-quantitatively
analysed by agarose gel electrophoresis. Bands in test samples were visually compared to
those in untreated controls. The amplified PCR products generated from each pair of primers
were verified by DNA sequencing. DNA size marker (100bp DNA ladder Dye plus, Takara Bio
Inc.) was run on the left-hand lane of the gel. (B) Emission of radiation between 200 and 800 nm
was analysed using a UV-Vis-Near-infrared multichannel spectrophotometer (S-2431; Soma
Optics Ltd., Tokyo, Japan). The intensity of emission at each wavelength collected from the
upper, middle, and lower position of the discharge region using an optical fibre probe is shown.
Peaks related to the second positive system of nitrogen (316, 337, 381, 405 nm) were detected.
Modified from Figure 8 in Sakudo et al. (2013).

treatment on plant related bacteria and fungi has accumulated, there is a lack of data for plant
viruses. As such, there are no reports describing the effectiveness of gas plasma treatment on
plant viruses. Therefore, research needs to be focused on this area if the technology is to be
applied to the disinfection of agriculturally related viruses.
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Figure 10.7 Nitrated proteins in influenza virus-infected allantoic fluid were induced by
nitrogen gas plasma treatment. Proteins in influenza virus (A/PR/8/34)-infected allantoic fluid
(3x 10" TCID,/mli) treated with nitrogen gas plasma (1.5kpps) using BLP-TES for 0 and 5
min (A) or 0 and 15 min (B) were subjected to sodium dodecy! sulfate (SDS)-polyacrylamide
gel electrophoresis (PAGE) and transblotted onto a polyvinylidene fluoride (PVDF) membrane.
Nitrated proteins on the membrane were detected with anti-nitrotyrosine antibody (MAB5404;
Millipore, Billerica, MA). The amount of nitrated proteins increased after nitrogen gas plasma
treatment. The molecular mass marker (kDa) is shown on the right hand side. The intensely
stained band with a molecular mass of ~88.7 kDa may correspond to nitrated NA. Reproduced
from Figure 10 in Sakudo et al. (2014).
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Spores on Citrus unshiu by
Atmospheric Pressure Dielectric
Barrier Discharge

Yoshihito Yagyu and Akikazu Sakudo

Abstract

In the field of agricultural and food processes, the development of safe, high-quality disinfec-
tion methods that do not rely on chemical treatment is a promising approach for preventing
food poisoning caused by pathogens such as fungi and bacteria. Recently, information has
accumulated showing the potential of gas plasma as a novel food disinfection technology. In
this chapter, to highlight recent advances in gas plasma technology for applications in food
disinfection, we introduce our studies on the disinfection of Penicillium digitatum spores
on Citrus unshiu by atmospheric pressure dielectric barrier discharge (APDBD). Future
perspectives of this technology will also be discussed.

Introduction

Food security and food safety are crucial factors with regard to protection against food poi-
soning and plant disease in the food quality industry and in the management of agricultural
production and food processing. With the exception of organic farming, agricultural chemi-
cals such as pesticides and fungicides are usually applied to protect agricultural crops from
hazardous injuries caused by disease and harmful insects. Postharvest diseases cause sub-
stantial postharvest losses, which is one of the major issues with agricultural crops. To avoid
such losses, agricultural products are generally sterilized with substances exerting chemical
and physical bactericidal effects, such as agricultural chemicals, chlorine bactericides, bacte-
ricidal gas, y-ray irradiation, or thermal treatment. Application of agricultural chemicals for
agricultural crops after harvest is strictly prohibited under Japanese regulations, although
postharvest applications of other chemical-free methods are permitted. Therefore, it is
a challenge to protect agricultural products from injury caused by pests and several fungi
and viral bacterial diseases during storage or transportation. Furthermore, there is currently
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a general consumer concern of the residual agricultural chemicals in fresh fruits and veg-
etables. In actuality, most farmers, agricultural workers, and producers of the agriculture
market tend to support pesticide-free or pesticide reduction production (Misra et al., 1991;
Fu et al., 1999; Krystallis and Chryssohoidis, 2005; Dimitri and Dettmann, 2012).

There is always a risk of exposure of an agricultural product to a plant disease caused by
harmful fungi or other pests before it reaches the consumer. For example, the green mould
Penicillium digitatum and the blue mould Penicillium italicum cause important fungal diseases
of all types of citrus. According to statistics released by the Ministry of Agriculture, Forestry,
and Fisheries of Japan in 2011, approximately 100,000 tons of the satsuma mandarin Citrus
unshiu, a common and popular species of Japanese citrus, were lost during postharvest, and
the financial losses were estimated at around 20 billion yen per year.

To improve the safety and security of agricultural crops, we investigated an alternative
method to the use of agrichemicals for prevention against fungal diseases using plasma
disinfection. Low-temperature sterilization and disinfection techniques using plasma have
been developed for medical applications (Hayashi et al., 2006; Utsumi et al., 2014; Iseki et
al., 2012), and the discovery of novel plasma applications for the life sciences has become
one of the major topics in the field of plasma treatment of biological materials (Moisan et
al., 2001; Laroussi, 2005; Kitazaki et al., 2012; Dubinov et al., 2000). In this study, the effect
of plasma disinfection using atmospheric pressure dielectric barrier discharge (APDBD)
against green mould spores attached to citrus fruit was investigated (Yagyu et al,, 2015). We
further discuss the possibility of the plasma disinfection technique for practical agricultural
applications as an alternative method to the use of agrichemicals.

Direct plasma disinfection of green mould spores on citrus fruit

by APDBD

APDBD as an atmospheric plasma source was generated by an AC high-voltage power unit
(Logy Electric Co., LHV-10AC) and an electrode for dielectric barrier discharge (Fig. 11.1).
The output waveform of the energy source had a sinusoidal wave shape at 10 kVpp with

HV power supply
(10kV_, 9-11kHz)

w Aluminum electrode

Dielectric Si sheet
(0.1-5.0 mm)

Figure 11.1 Experimental setup for direct plasma disinfection of green mould spores on the
surface of citrus.
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9-11kHz. The APDBD electrode used in this study consisted of an aluminium plate cov-
ered by a silicon (Si) sheet with a diameter of 9.0 cm and a thickness ranging from 0.0S mm
to Smm. The spore suspension of the green mould P. digitatum was prepared with 50 ppm
dioctyl sulfosuccinate sodium salt base, and the density of mould spores was maintained at
1 x 108 cfu/ml P. digitatum spores. The suspension was directly applied to the surface of the
satsuma mandarin C. unshiu, and then naturally dried in the atmosphere.

The irradiation period of APDBD varied from 0 to 5 s, and was generated on the sur-
face of citrus so that the mould spores on the citrus were directly exposed to plasma in an
open environment. Spores on the citrus were picked up with a wet swab tip (ST-25PBS,
Elmex Ltd.), and the swab was vortexed for 10 s to release the spores from the swab tip into
phosphate-buffered saline. The effect of APDBD on inactivation of the mould spores was
estimated by using a sheet-type medium for yeast and mould (Sanita-kun, Chisso Corp.)
(Teramura et al., 2015). Mould spores were cultured in an incubator maintained at a con-
stant temperature of 25°C, and then viable mould spores appeared on the medium sheet as
red-coloured colonies after 48 to 72 h.

An aluminium plate covered by a dielectric silicon sheet was used as the APDBD elec-
trode, and plasma was generated on the surface of the object by applying a power of 10kV
between the electrode and the object.

Condition of APDBD plasma generated on citrus

The typical condition of APDBD plasma is shown in Fig. 11.2. APDBD plasma of a brightly
luminescent area was observed at a boundary surface between the electrode and object on
the circumference of C. unshiu from the side view exposing the plasma (Fig. 11.2a). APDBD
plasma was also generated on the surface of C. unshiu, and double concentric circles of the
light emitted by the plasma were observed from the bottom view, as shown in Fig. 11.2(b).
Furthermore, small and numerous bright spots were observed, which were assumed to be
the oil glands of citrus.

Figure 11.2 APDBD plasma generated on the surface of Citrus unshiu. (a) Side view with
plasma irradiation. (b) Bottom view with plasma irradiation. Violet-coloured plasma was
observed at a bright boundary surface between the APDBD electrode and Citrus unshiu.
APDBD plasma was generated by two-fold concentric circles. Small and numerous bright
spots were observed, which were assumed to be the oil glands of citrus.
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e

Disinfecting effect of green mould spores on citrus by direct %
treatment of APDBD plasma '
P. digitatum spores on the surface of C. unshiu were disinfected by APDBD plasma. The
total viable mould spore count was clearly reduced depending on the irradiation period of
APDBD plasma (Fig. 11.3). UV radiation and reactive oxygen species such as ozone, O
radicals, and OH radicals contributed as inactivation factors in APDBD plasma. Previous
studies showed that an atomic oxygen radical could effectively inactivate P, digitatum spores
in atmospheric pressure plasma (Iseki ef al., 2010; Iseki et al., 201 1; Hashizume et al., 2014).
Furthermore, UV-C radiation in plasma was reported to be the dominant factor responsible
for the inactivation of P. digitatum (Giindiiz and Pazir, 2013).

Next, the effect of the thickness of the dielectric sheet used for inactivation of P. digi-
tatum spores was examined. At a thickness of 0.3 mm, the number of germinating spores
was reduced by approximately 1/10 in 1s of irradiation and by approximately 1/100 in 3
s of irradiation. Furthermore, the disinfecting effect of the thin sheet (1.0mm) was higher
than that of the thick sheet (5.0mm). On the other hand, there was no clear difference in Figure 11.4 T
disinfecting effects among sheets less than 1.0 mm thick. The potential difference between energy consur
the aluminium electrode and Si sheet was measured, which tended to be gradually saturated
as the thickness of the dielectric sheet increased, as shown in Fig. 11.4. Further, the energy

consumption of APDBD increased with decreasing thickness of the Si sheet. The condition Relationshi
of APDBD plasma showed a tendency to change drastically depending on the thickness of of citrus
the dielectric Si sheet when the thickness was less than 1.0mm. A thermograp
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Figure 11.3 Disinfecting effect of direct treatment of APDBD plasma to P, digitatum spores on
the surface of Citrus unshiu depending on the irradiation period and Si sheet thickness. Figure 11.56 T
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Figure 11.4 Thickness dependency of the dielectric Si sheet for the potential difference and
energy consumption of APDBD.

Relationship between surface temperature and thermal injury

of citrus

A thermography camera (VarioCAM?® High resolution basic 384, Jenoptik Ltd.) was used
to measure the surface temperature of citrus during APDBD plasma exposure, and the sur-
face condition of citrus was visually observed at each irradiation period. As shown in the
thermographic images presented in Fig. 11.5, the surface temperature partially increased
immediately after plasma irradiation. A significant temperature increase was noted at a
boundary surface between the electrode and object on the circumference of C. unshiu.

Figure 11.5 Thermographic images of Citrus unshiu surface.
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Figure 11.6 Relationship between the surface temperature of Citrus unshiu and exposure
period of APDBD plasma.

Fig. 11.6 shows the change in surface temperature of citrus depending on the exposure
period of APDBD plasma. The surface temperature of citrus treated with APDBD increased
rapidly and then gradually saturated with increasing irradiation time. The surface tempera-
ture also increased depending on the thickness of the Si sheet, with a higher temperature
observed with the 1.0-mm-thick sheet compared to the 0.5-mm-thick sheet. The energy
consumption of APDBD was also strongly dependent on the thickness of the Si sheet.

Fig. 11.7 indicates the visual condition of citrus from 0 s of irradiation, as a control, to
3 min of irradiation, when APDBD plasma was generated with the 0.5-mm-thick Si sheet.
Although the citrus surface was not injured following plasma irradiation for S s to 30 s, the

control

Figure 11.7 Thermal injury of Citrus unshiu induced by APDBD plasma disinfection from 0 s
to 3 min.
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surface of C. unshiu turned brown after 1 min of irradiation. Therefore, under the condition
of less than approximately 65°C with 60 s of irradiation time, the surface of citrus did not
incur any damage. However, the citrus surface was obviously injured by heat generated from
an electrode when the temperature increased over 65°C with increasing treatment time.
However, the negative effect of thermal damage of the citrus surface induced by plasma
treatment would be negligible from a practical standpoint, because APDBD plasma could
reduce the viable count of P. digitatum spores on C. unshiu to about 1/100 with only 3 s of
treatment (Fig, 11.3).

The surface temperature partially increased at a boundary surface between the electrode
and the circumference of Citrus unshiu immediately after plasma irradiation, and a signifi-
cant temperature rise was recognized.

The surface temperature of citrus treated with APDBD increased rapidly and then gradu-
ally saturated with increasing irradiation time.

The citrus surface was not injured until 30's of plasma irradiation. The surface of Citrus
unshiu turned brown at irradiation times longer than 1 min. The damage occurred by heat
from the electrode when the temperature increased over 65°C with increasing treatment
time.

Typical optical emission spectrum from APDBD on the citrus

surface

Fig. 11.8 shows a typical optical emission spectrum in the range of 250-800nm from
APDBD plasma, which was generated in an open environment by the device illustrated in
Fig. 11.1. The spectrum was measured on a spectrometer (Hamamatsu, PMA-C8808), and
the optical emission from the N, second positive band showed high intensity. Other species
were also observed, such as the N, first positive band at around 400 nm and the O radical
at 777 nm, although these were very weak compared to the N, second positive band (Fig.
11.9). Furthermore, UV emissions, such as UV-A (320-400nm), UV-B (290-320nm),
and UV-C (200-290 nm), were confirmed from the plasma generated on the citrus surface,

Intensity [arb. units]

,Al})|xll i o . P o e o
e e ottt L = L

L e e

200 300 400 500 600 700 800 900
Wavelength[nm]

Figure 11.8 Typical optical emission spectrum of air plasma.
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as indicated in Fig. 11.10 and Fig. 11.11. Therefore, the dominant inactivation factors of
APDBD were considered to be UV radiation and active oxygen species such as ozone, O
radicals, and OH radicals.

Oxygen radicals at 777 nm were observed in the spectrum from APDBD plasma gener-
ated in an open environment.

UV radiation categorized as UV-C (200-290nm) was observed in the spectrum from
APDBD plasma generated in an open environment.

UV radiation categorized as UV-B (290-320 nm) and UV-A (320-400 nm) was observed
in the spectrum from APDBD plasma generated in an open environment.

Conclusions and future perspectives

Disinfection of Citrus unshiu using direct application of APDBD plasma for inactivating P.
digitatum spores was investigated in this study. APDBD plasma irradiation showed good
ability to sufficiently inactivate mould spores in only a few seconds with no damage to the
surface of citrus. The surface temperature of citrus depended on the exposure period of
APDBD plasma. The citrus surface was thermally discoloured to a brownish colour when
the temperature was higher than 65°C. However, the damage caused by high temperature
would not be a practical problem because mould spores were effectively treated in only a few
seconds before a high temperature was reached.

The novel technique of plasma irradiation of fresh food and processed foods such as veg-
etables, crops, and fruits shows potential to be widely adopted in agricultural applications.
Furthermore, novel plasma applications have been developed for clinical medicine, and
the positive effects of plasma on biological materials such as cells and the living state have
been verified in recent studies. Practical applications of plasma have also been developed
including our technology. It is expected that plasma disinfection will be widely realized as
an alternative method to agrichemicals application in the near future,
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Current Progress in Seed
Disinfection by Gas Plasma:
Disinfection of Seed-borne
Fungi and Bacteria by Plasma
with Alternating Current High-
voltage Discharge

Terumi Nishioka, Tomoko Mishima, Yoichi Toyokawa,
Tatsuya Misawa and Akikazu Sakudo

Abstract

Seed-borne pathogens are one of the most important causative agents of plant diseases and
prevent healthy growth, resulting in the reduction of marketable and profitable crops. Cur-
rently, treatments with hot water and air have been used for disinfection of seeds; however,
these methods are time-consuming and sometimes damage seeds. Recent studies have
shown the potential of gas plasma technology for disinfection of seeds. As short plasma
treatments have achieved successful disinfection of seed-borne fungi and bacteria without
seed damage, this innovative technology can facilitate rapid and safe disinfection of seeds.
This chapter will outline our recent studies on disinfection of seed-borne fungi and bacteria
by plasma with alternating current high-voltage discharge and discuss the future perspec-
tives for seed disinfection made possible by plasma technology.

Introduction

Seeds infested with plant pathogens may reduce seed germination or vitality owing to the
development of diseases. The resulting decrease in the seedling population leads great loss
in crop yield. Additionally, these seeds carrying plant disease agents may introduce diseases
into new, pathogen-free fields (Kulik, 1995).

Of the various kinds of seed-borne plant pathogens, fungi are responsible for the great-
est number of plant diseases. Effective control measures include exclusion of pathogens
through seed certification and seed treatment (Neergaard, 1977). The use of seed dressing
or dipping seeds in fungicide is very effective and commonly used. However, in cases where
a novel disease occurs or originates from imported seeds, suitable chemicals might not be
domestically available. Seed-borne pathogenic bacteria represent the second largest group
of plant pathogens (Kulik, 1995), but compared to fungicides, the variety of bactericides
available in Japan is very limited. Moreover, in recent years, there has been increasing public
demand for ecofriendly alternatives to fungicides and bactericides.
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There are two commonly used, ecofriendly methods for seed disinfection: hot water and
hot air treatments. Hot water treatments are generally completed in 10-30 min at around
50°C; however, the water temperature and treatment time must be carefully controlled to

inactivate the pathogens without damaging the seeds (Babadoost, 1992). The hot air treat- -

ments do not involve a drying process after treatment, and are advantageous in comparison
to hot water treatments. But more time (several days) is required to inactivate the pathogens.

Plasma treatment has attracted a lot of attention as an ecofriendly method for inacti-
vating microorganisms, and the application of plasma sterilization to seed disinfection has
been studied. Selcuk et al. (2008) reported that their self-designed low-pressure cold plasma
system could significantly reduce surface fungal contamination of seed storage fungi, such as
Aspergillus spp. and Penicillium spp., on grains and legumes. They achieved a 3-log reduction
of Penicillium spp. on wheat within 15 min. The plasma was generated at running pressure
0.07 kPa with air gasses or SF, as the discharge gas in their system. Filatova et al. (2012)
reported that low-pressure radio-frequency air plasma treatment for 5-15 min reduced
the level of seed infection with pathogenic fungi such as Fusarium spp., Alternaria spp., and
Stemphylium spp. These studies suggest that plasma treatment can inactivate pathogens on
seeds more rapidly than hot air treatment and without wetting the seeds. However, the
number of reports concerning seed disinfection by plasma is small.

Hence, in this chapter, we will discuss our studies on the disinfection of seeds contami-
nated with pathogenic fungi and bacteria.

Disinfecting effect of plasma treatment on seed-borne fungi

and bacteria

Electric discharge under low gas pressure conditions can generate a large volume of uniform
plasma in comparison with discharge at atmospheric pressure conditions, and low-pressure
and low-temperature plasma might be better suited for the future application of gas plasma
to seed disinfection (Nishioka et al., 2014). We evaluated the effect of low-pressure plasma
on the fungal and bacterial inactivation. The plasma apparatus is shown in Fig. 12.1 (Nish-
ioka ef al., 2014). The plasma was generated by low frequency AC discharge at a low gas
pressure. Two insulated aluminium electrodes were installed to a level in the glass chamber.
The pressure in the chamber was controlled by the vacuum pumping and the discharge gas
injection. Argon gas was used as discharge gas. When the flow rate of argon gas was 0.5 L/
min, the pressure in the chamber was sustained at 10.7 kPa. A high voltage was applied to the
electrodes by the low frequency AC power supply, and low-pressure and low-temperature
argon plasma was generated between the electrodes. The peak-to-peak voltage and fre-
quency of power supply were 5.5kV and 10kHz, respectively. The seeds were placed on the
mesh sheet between electrodes and exposed to the argon plasma.

As a model of seed-borne fungi, Rhizoctonia solani, which causes damping-off, was
inoculated on brassicaceous seeds (Brassica campestris var. amplexicaulis). This fungus can
be transmitted by seeds of solanaceous and brassicaceous crops and Japanese hornwort
(Cryptotaenia japonica Hassk) (Neergaard, 1977; Fujita et al., 2005). Japanese hornwort is
usually grown by soilless culture in Japan and once the damping-off appears, no available
chemical agents can effectively control the disease. Nishioka ef al. (2014) reported that
plasma treatment for S min reduced the fungal survival rate to 3.3%, while the inoculated
R. solani was found to be alive on 83% of the seeds before treatment. The inactivation effect
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Figure 12.1 Low-pressure plasma apparatus (a) and its schematic diagram (b). Plasma was
generated by an AC high-voltage discharge and argon was used. Seeds were set on a mesh
sheet in the plasma apparatus. Reproduced from Nishioka et al. (2014) with permission from
the Society for Antibacterial and Antifungal Agents, Japan.

on R. solani was dependent on the plasma treatment time. Treatment for 40 min achieved
complete inactivation of R. solani on the seeds (Fig. 12.2).

Black rot caused by Xanthomonas campestris pv. campestris is considered the most
important disease of crucifers worldwide, attacking all cultivated brassicas, radishes, and
numerous cruciferous weeds (Williams, 1980). Its infested seeds are a primary source of
the disease (Shiomi, 1992). Hence, X. campestris was used as a model of seed-borne bacteria
in this study. The inactivation effect on X. campestris inoculated on brassicaceous seeds was
also dependent on the plasma treatment time (unpublished results). The viable cell number
was reduced to below 0.1% after plasma treatment for a few minutes.

We also evaluated the inactivation of Magnaporthe oryzae, a pathogenic fungi, by the
atmospheric pressure plasma (Misawa et al.,, 2013; Nishioka et al,, 2013). M. oryzae causes
rice blast disease, which is one of the most important diseases in the rice-producing regions
of the world (Agrios, 2005). More than S-min plasma treatment with an AC high-voltage
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Figure 12.2 inactivation of Rhizoctonia solani inoculated on seeds with low-pressure plasma.
Plasma treatment was performed using the plasma apparatus shown in Figure 12.1. The
voltage and frequency applied to electrodes were 5.5kV and 10kHz, respectively. The argon
gas flow rate was 0.5 L/min. The running pressure in the chamber was 10.7 kPa. Rhizoctonia
solani was inoculated on Brassica campestris var. amplexicaulis seeds. The R. solani survival
rate on seeds after plasma treatment was observed. Reproduced from Nishioka et al. (2014)
with permission from the Society for Antibacterial and Antifungal Agents, Japan.

discharge of 10kV at 10kHz and a flow rate of 3 1/min argon, could inhibit the conidial
germination of M. oryzae (Fig. 12.3).

Since the early 1970s, there has been a global emergence of fungicide-resistant strains
(Ishii, 2006), and many of these strains are also seed-borne pathogens including M. oryzae.
Seed disinfection by plasma could be an important strategy for disinfection, which is dif-
ficult to achieve using traditional fungicides or bactericides, against such chemicals-resistant
pathogens. Further investigations are needed for the application to various kinds of seeds,
since the surface structure and hull composition of seeds also have an impact on the effec-
tiveness of the plasma (Selcuk et al., 2008).

Heat generated during plasma treatment and its influence on

seed germination

Several factors such as heat, ultraviolet (UV) radiation, and oxidative stress are generally
produced during the plasma generation process (Maeda et al., 2015). The generated dry
heat could inactivate plant pathogens on seeds, while simultaneously damaging the seeds.
In general, hot air treatments are carried out at about 70-80°C, and it takes 2-5 days to
inactivate pathogens. The temperature in our low-pressure plasma apparatus was 50-60°C
after plasma treatment for 5 min. It gradually rose and finally reached a temperature higher
than 70°C after 40 min. We evaluated the germination rate as an indicator of seed quality
(Nishioka et al., 2014). There was no significant difference in the germination rate of B.
campestris var. amplexicaulis seeds between the untreated and each plasma-treated group
(P>0.05; Table 12.1). These facts suggest that the low-pressure plasma system does not
induce significant thermal damage on the seeds.
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Figure 12.3 Inhibition of Magnaporthe oryzae conidial germination with atmospheric-pressure
plasma. The plasma was generated by AC high-voltage discharge with argon. The voltage and
frequency applied to electrodes were 10kV and 10kHz, respectively. The argon gas flow rate
was 3 L/min. The distance from the plasma source to the sample surface was 3cm. The 0.8-
cm water agar-cored disk dispensed with M. oryzae conidia, approximately 5 x 102 per disc,
were treated with plasma. After each treatment, the M. oryzae disc was incubated on a fresh
potato dextrose agar plate at 25°C to evaluate the conidial germination rate. Reproduced from
Nishioka et al. (2013) with permission from the Asian Food Safety and Security.

Table 12.1 The germination rate of Brassica campestris var. amplexicaulis seeds (%) after low-
pressure plasma treatment (Nishioka et al., 2014)

Post-treatment time

Treatment time 2 days 6 days
untreated 95.6 96.7
5 min 100 100
10 min 93.3 96.7
20 min 90.0 94.4
40 min 90.0 95.0

The voltage and frequency applied to electrodes were 5.5kV and 10kHz, respectively. The argon
gas flow rate was 0.5 L/min. The running pressure in the chamber was 10.7 kPa. No significant
differences in seed germination were found among untreated and plasma treated groups both after
2 days and 6 days’ incubation (P>0.05).

In our low-pressure plasma system, dry heat might not be an important factor for fungal
and bacterial inactivation. The dry heat equivalent to that generated during plasma treatment
could not significantly reduce the cell number of X. campestris on the seeds (unpublished
results). Hot air treatments for seed disinfection of X. campestris at 75°C take 5-7 days
(Shiomi, 1992), while disinfection of R. solani on Japanese hornwort seeds takes 3 days at
77°C (Kawaradani et al., 2009). Thus, some factors other than dry heat might be associated
with inactivation of the pathogens.
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An air plasma discharge produces oxygen atoms, ozone, OH-radicals, N-radicals, plasma
electrons, and so on (Deng et al., 2007). Such species are very strong oxidizers and are
thought to play important roles in damaging microorganisms. Gaunt et al. (2006) described
that ozone produced in the gas discharge is one of the most significant reactive species that
causes oxidative damage. Its density depends on the plasma apparatus and plasma generation
conditions. Iseki et al. (2010) reported that their high-density non-equilibrium atmospheric
pressure plasma employing argon gas successfully inactivated Penicillium digitatum spores.
The ozone density reached 2 to 8 ppm during plasma generation. They confirmed that the
contribution of ozone to inactivation of P. digitatum spores was small. In our low-pressure
plasma, a very small amount of ozone was generated, but its density was not considered to
be high enough to inactivate pathogens such as R. solani and X. campestris (unpublished
results).

In recent years, surface modification of seeds with plasma discharge has attracted a lot of
attention as a method for improving seed germination rate and the speed. Positive effects of
plasma treatment on germination of various agricultural and horticulture plants have been
previously demonstrated (Dhayal et al., 2006; Filatova et al., 2012; Mitra et al., 2014; Ser4 et
al, 2013). On the other hand, Serd et al. (2012) compared four plasma treatments and con-
firmed that stimulation or inhibition of germination and early growth of seed are strongly
connected not only with plant species and duration of plasma exposure but also with the
type of plasma apparatus. Barmashenko et al. (2012) demonstrated the modification of the
wettability characteristics of seeds by cold radiofrequency air plasma treatment, and they
stated that it was reasonable to relate the change of wettability of seeds to the oxidation of
their surfaces under plasma treatment.

Seed disinfection by plasma for food safety

Many foodborne illness outbreaks associated with the consumption of raw sprouts have
occurred in the past few decades worldwide. In most of the cases, Escherichia coli or Salmo-
nella spp., the causative organisms, is considered to originate from sprouted seeds, and the
high temperature and humidity during seed germination are suitable for the rapid growth of
pathogens (Castro-Rosas and Escartin, 2000; Feng et al., 2007; Saroj et al., 2007; Taormina
and Beuchat, 1999). Accordingly, the decontamination of seeds prior to germination is
important for the safety of sprouted seeds (Nei et al,, 2013).

Chemical treatments with chlorine are currently used to disinfect sprout seeds. How-
ever, high levels of chlorine discharged into wastewater treatment facilities present a large
environmental burden (Hu et al., 2004), and such treatments also have an impact on human
health. In some European countries the use of chlorine for the ready- to use food products
is prohibited (Ongeng et al., 2006; Rico et al., 2007). The need for other disinfection and
sterilization technologies to control infection and disease is increasing,

Recently, there have been numerous studies evaluating the inactivation of food-borne
pathogens such as E. coli O157:H7, Salmonella spp., and Listeria monocytogenes, and sev-
eral reports show that plasma treatment can be used for reducing microbial populations
on product surfaces (Critzer ef al,, 2007; Fernandez et al., 2013; Niemira and Sites, 2008).
Atmospheric pressure air plasma, which is based on a microwave driven discharge for 15 min,
achieved an approximate 6-log CFU inactivation of Bacillus atrophaeus endospores, which
are much more resistant to sterilization methods than vegetative bacteria, on various seeds
(Schnabel et al., 2012). Furthermore, the most recent study has evaluated the inactivation
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of natural microbiota attached to the chickpea seed surface by atmospheric pressure plasma
(Mitra et al., 2014). Although naturally occurring microorganisms can be attached on the
seed surface, even in the narrow gaps, for a long time in the form of microcolonies or bio-
films and are therefore harder to inactivate (Izquier and Gémez-Lopez, 201 1), it was shown
that the plasma treatment for 2 and § min could achieve 1 and 2 log reduction, respectively.

Conclusion and further perspectives

In principle, plasma treatment may be primarily used to decrease microbial contaminants on
surfaces (Schliiter ef al., 2013). Pathogens contaminate seeds during a number of processes
including seed production, seed harvest, transport, storage, and via several pathways such
as mixing with other infected seeds and unsanitary water. Gas plasma sterilization can be
performed at low temperatures so as not to damage seeds, and with short processing times,
without wetting seeds or using chemicals. Gas plasma may offer an alternative to current
seed disinfection methods (Selcuk et al., 2008).

Agricultural products may be exposed to several pathogens, which include seed-borne
and soil-borne pathogens, that cause several food-borne illness, before being delivered to
the consumer. Microbial hazard is one of the most important issues in food industry (Fig.
12.4). It is essential to control the probable pathogens at every step from farm to consumer.
Numerous past studies have described that plasma treatment can inactivate various kinds

Germination

. Growth
Agricultural products -

Sorting and transporting process Harvest

Figure 12.4 Future perspectives of plasma disinfection technology in agricuitural field.
Microbial hazards are one of the most important issues in food industry. Before delivering
agricultural products, such as fruits and vegetables, plants are prone to contamination from
water, soil, fertilizer, dusts, insects, animal faeces, and field workers during pre-harvest
and harvest, in addition to transport, packaging and other food processing. Furthermore,
consumers of contaminated fruits and vegetables might be exposed to a higher risk of food-
borne illnesses, which may be caused by seed-borne and soil-borne pathogens.
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of bacteria and fungi including several plant pathogens and human pathogens. To minimize Mlsa::e';l;‘t’e‘?
the risk of disease, gas plasma can be used as an innovative disinfection technology to treat thfa, A, Li,
infested seeds before they grow into crops and processed as agricultural products. Inactivatic
atmospher
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Abstract

ISO 11138-1 and ISO 14161 are the major documents to follow for biological indicator
(BI) manufacturers and Bl users, respectively. Based on these ISO documents, the spores of
Geobacillus stearothermophilus ATCC 7953 are used for Bl of gas plasma sterilization. In this
chapter, the importance of following ISO documents for sterilization validation in the case
of gas plasma exposure will be introduced.

ISO documents

I am a Japan delegate of the ISO Technical Committee (TC) 198 and 194. TC 198 covers
Sterilization of healthcare products. TC 194 covers Biological and clinical evaluation of
medical devices. There are currently no ISO documents covering gas plasma sterilization.
I have extensive experience in both the gas plasma sterilization field and as an ISO TC
delegate. In addition, I have published ISO-relevant books and papers, so based on these
experiences I have prepared this chapter describing the application of ISO requirements to
gas plasma sterilization. Gas plasma sterilization is a useful procedure that can easily achieve
a sterility assurance level (SAL) of 1076 and material/functional compatibility simultane-
ously (Chapter 3) (Shintani et al., 2007, 2010; Shintani, 2012; Klaempfl et al., 2012; Venezia
et al., 2008). This is because the gas plasma penetration depth is quite shallow (10-20nm)
(Shintani ef al., 2007; Shintani, 2012), so material does not deteriorate as easily compared
with existing sterilization procedures. Current sterilization validation requires a SAL of
107® and simultaneous material/functional compatibility. If strict adherence to this require-
ment were required of the existing sterilization procedures, there would be no sterilization
procedures available, so this requirement of simultaneous attainment of SAL of 10-° and
material/functional compatibility is in most cases ignored when applied to real steriliza-
tion procedures. For example, in our experiments comparing material compatibility among
gamma-ray, autoclaving and ethylene oxide gas sterilization, significant deterioration of pol-
yurethane materials was observed (Shintani, 1995). Therefore, if the absolute requirement
for sterilization validation were applied (Zheng et al,, 2011; Chang et al., 2013; Yuaan et al.,
2008; Volny et al., 2007; Kwock et al., 2004; Williams et al., 2004; Olde et al., 2003; Kujipers
et al., 2000; Bos et al., 1999; Kawakami et al., 1996; Lin and Cooper, 1995; Courtney et al.,
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Box 13.1 Four major degradation documents in the ISO 194 document

+ Identification and quantification of degradation products from polymeric medical
devices is in 1SO 10993-13

*  Identification and quantification of degradation products from ceramics is in ISO
10993-14

* Identification and quantification of degradation products from metals and alloys is
in ISO 10993-15

- Toxicokinetic study design for degradation products and leachables is in 1ISO 10993-
16

1978), no available sterilization procedures would suffice; as a result, sterilization validation
is currently a compromise.

In the ISO 194 document, there are four major degradation documents as outlined in
Box 13.1. These documents discuss degradation products in the body, not by sterilization,
but the mechanism of in vivo degradation is quite similar to enzymatic degradation and that
of sterilization because bonds with low bonding energy are easily cleaved in vivo as well as
during sterilization (Table 13.1).

In ISO 198, several sterilization procedures are discussed. Sterilization procedures are
individually discussed, but for example chemical indicators (CI) or biological indicators
(BI) are common topics of discussion for sterilization validation and routine control. CI
documents are presented in ISO 11140-1 to 11140-5 and BI document are in ISO 11138-1
to ISO 11138-3. Bl is approved for use in both validation studies and routine control, but
Cl is not approved for use in validation studies and it is only approved for use in routine
control in support of BL. This means that BI and CI differ significantly. Unlike CIs, BIs are
absolutely essential to attain sterility assurance as described in several ISO documents.

The biological discussion is documented in ISO 11737-1, ‘Sterilization of medical
devices-Microbiological methods-Part 1: Determination of a population of microorganisms
on products. CFU of the biological indicator or bioburden in/on the carrier or products can
be determined by using ISO 11737-1. Several methods for the recovery of the bioburden
from health care products are discussed in ISO 11737-1. ISO 11737-1 discusses only the
retrieval of the bioburden from the products, in contrast to ISO 11138-1 and ISO 14161,
which deal with BI retrieval from BI carriers such as paper or SUS. Both ISO documents
were discussed at TC 198. Tests of sterility performed in the definition, validation and main-
tenance of a sterilization process is in ISO 11737-2. Aseptic processing, BI use and other

issues related to sterility assurance are described in the documents listed in Box 13.2.

I'mostly discuss working group 4, which deals with biological indicators (BIs) (see Box
13.3). Among these ISO documents from ISO TC 198 and 194, ISO 11138-1,1ISO 14161,
ISO 14937,1S0 15882 and ISO 11737-1 are the essential ISO documents to read and com-
prehend for validation study and routine control.

Table 13.1 B
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Table 13.1 Bonding dissociation energy (kcal/mol at 25°C)

DH298 (kcal/  AfH298(R) DH298 AfH298 (R)

mol) (kcal/mol) (kcalmol} {(kcal/mol)
Inorganics
H, 104.206+0.003 52.103+0.003 OH- — O +H 110.21+0.07 -33.23+0.07
HF 136.25+0.01 18.83+0.17 OH* —» O+H* 115.2+0.1 59.55+0.02
HCI 103.15+0.03 29.03+0.04 H,S 91.2+0.1 34.2+0.2
HBr 87.54+0.05 28.62+0.06 SH 84.1+£0.2 66.2+0.3
HI 71.32+0.06 26.04+0.08 H-NO 495+0.7 21.8+0.1
H-CN 126.3x0.2 105.0+0.7 H-ONO (trans) 79.1+0.2 8.2x0.1
NH, 107.6+0.1 445+0.1 H-ONO, 101.7£04  17.6x0.3
H,0 118.82+0.07  8.86+0.07 SiH, 91.7+0.5 47.910.6
OH 101.76+0.07 59.55+0.02 GeH, 83+2 53x2
Hydrocarbons
CH, 104.99+0.03 35.05+0.07 CH,CH-H 110.7+0.6 71.1+0.7
CH, 110.4+£0.2 93.3+0.2 HCC-H 133.32+0.07 135.6+x0.2
CH, 101.3x0.3 142.5+0.2 C H,-H 1129+0.5 80.5x0.5
CH 80.9+0.2 171.320.1 CH; — 0-CgH,+H 78x3 1063
CH,CH,-H 101.1+0.4 29.0+04 CeH; > m-CH,+H 94x3 122+3
(CHp,CH-H  98.60.4 21.5+0.4 CeHg — p-CgH,+H 1093 1383
CH,CH,(CH,) 98.2+0.5 16.1£0.5 CH,CHCH,H 88.8£0.4 414204
CH-H
(CHY,C-H  96.5+0.4 12.3+0.4 CgHCH,-H 89.8x06  49.7x0.6
Alcohols
H-CH,OH  96.1+0.2 ~4.08+0.2 CH,CH,0-H 104.7+0.8  -3.6+0.8
CH,O-H 104.6+0.7 4.3+0.7 (CH,),CHO-H 105.7£0.7 -11.5+0.7
CH,S-H 87.4+0.5 29.8+0.4 (CH,),CO-H 106.3x0.7 -20.5+0.7
H-CH,SH 942 36+2 CgH;O-H 90+3 ~-58+3
Peroxides
HOO-H 87.8+0.5 3.2+05 CH,CH,00-H 852 -6.8+2.3
CH,O0-H 881 48+1.2 CH,),CO0-H 842 ~-25.2+23
Carbonyls
H-CHO 88.144+0.008 10.1x0.1 H-COOH is = 96+1 -46.5+0.7
CH,C(O)-H 89.4x0.3 -2.4+0.3 CH,COO-H 11243 -43+3
H-CH,CHO 9412 25+22 C H,CO0-H 1114 -12+4
HCOO-H 112+3 -30%3

Reproduced from http://www2.chemistry.msu.edu/courses/cem850/handouts/Ellison_BDEs.pdf
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Box 13.2 Aseptic processing, Bl use and other issues related to sterility assurance

Aseptic processing of health care products

+ Part 1: General requirement is in ISO 13408-1

» Part 2: Filtration is in 1SO.13408-2

+ Part 3: Lyophilization is in ISO 13408-3

+  Part 4: Clean-in-place technologies is in ISO 13408-4
+  Part 5: Sterilization in place is in 1SO 13408-5

+ Part 6: Isolator systems is in ISO 13408-6

+ Part 7. Alternative processes for medical devices and combination products is in
ISO 13408-7.

Sterilization of health care products

Biological indicators
+ . Guidance for the selection, use and interpretation of results is in ISO 14161
+ + General requirements for characterization of a sterilizing agent and the development,

validation and routine control of a sterilization process for medical devices is in ISO
14937.

Chemical indicators
+ - Guidance for selection, use and interpretation of results is in ISO 15882.

Biological and chemical indicators
+  Test equipment is in ISO 18472.

Box 13.3 Working Group 4: Biological Indicators (Bls)

+ Part 1: General requirements is in 1ISO 11138-1

+ Part 2: Biological indicators for ethylene oxide sterilization processes is in ISO
11138-1

+ Part 3: Biological indicators for moist heat sterilization processes is in ISO 11138-3

« - Part 4: Biological indicators for dry heat sterilization processes is in 1ISO 11138-4

*  Part 5: Biological indicators for low-temperature steam and formaldehyde steriliza-
tion process is in 1ISO 11138-5.

ISO 11138-1 and ISO 14161

For gas plasma sterilization researchers, ISO 11138-1 and ISO 14161 are the essential ISO
documents to comprehend. ISO 11138-1 provides general information for BI manufactur-
ing companies and ISO 14161 is specifically for BI users. Therefore, Bl manufacturers must
obey the ISO 11138 series and BI validation studies and routine control must be carried
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out following the ISO 11138-1 requirements. According to that document, a BI with an
initial population of 106 CFU/ carrier must be utilized and a sterility assurance level (SAL)
of 1076 must be attained, indicating that a 12 log reduction is required for BI manufactur-
ers (ISO 11138-1). In routine control, the use of 10° CFU/carrier is approved as an initial
population, but the SAL requirement of 10-¢ is unchanged, so a full 11 log reduction must
be attained for routine control according to ISO 11138-1.

On the contrary, ISO 14161 provides the requirements for BI users and describes in
detail the half cycle method, overkill method, combined BI/bioburden method and abso-
Jute bioburden method. In the half cycle method, the initial population (10° CFU/ carrier)
must be reduced down to the half-cycle window (SAL S to SAL 107%; see Fig. 3.1), indicat-
ing a 6 or 8 log reduction, and these figures double. As a whole, a 12 to 16 log reduction is
therefore required. No healthcare product manufacturers conduct the half-cycle method
due to these very stringent requirements. When using the half-cycle method, it is easy to
attain a SAL of 1076, but material and functional compatibility cannot be attained due to the
long exposure time necessary. It is a serious problem if sterilization is successfully completed
but the material is no longer useful.

The over-kill method is commonly required for BI manufacturer validation studies, but
this method is not always appropriate for Bl users (ISO 14161). Bl users can conduct other
methods besides the over-kill procedure. The Bl initial population for the over-kill method
is 106 CFU/carrier and a SAL of 1076 must be achieved; therefore, a 12 log reduction is
required. This is a very difficult requirement for most BI users. Even if a SAL of 107 can
be attained, material and functional compatibility may be impossible to achieve with this
method.

According to ISO 11138-1 and ISO 14161, attainment of a SAL of 107¢ is absolutely
required. However, attainment of material/functional compatibility is required of BI users
in ISO 14161, but it is not required for Bl manufacturers in ISO 11138-1 because the BI
manufacturer has no material being tested. Therefore, the two sets of requirements are
clearly different.

The combined BI/bioburden method in ISO 14161 is specifically for BI users. The
initial population is the number of Geobacillus stearothermophilus ATCC 7953 spores that
is approximately equivalent to the bioburden number, so a few CFU/carrier, and a SAL
of 1076 is required. In this case, a six log reduction is required. Unfortunately, Bls with
this low concentration are not commercially available, so BI users must prepare the BI
themselves. At this point they are temporarily considered to be BI manufacturers, and as a
result they must follow ISO 11138-1. BI users who make their own BI must be inspected
by the authorities as if they were commercial BI manufacturers, but most Bl users do
not want to undergo these inspections. Commercial BI preparations with a population
of more than 103 CFU/carrier are available, and in most cases, to avoid inspections,
these will be chosen by BI users for use in the combined BI/bioburden method. In this
case, reduction from 10® CEU/carrier to a SAL of 107 represents a 9 log reduction. The
combined BI/bioburden method is the most popular, and is the most realistic method
if the authorities understand the BI/bioburden method requirements. The use of 10°
CFU/carrier in the same area as 105 CFU/carrier means that BI clumping will be less,
and therefore no tailing phenomenon is observed. Therefore it is easy to obtain a linear
survivor curve and a D value is easily defined compared with the overkill or half-cycle
methods.
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The last option is the absolute bioburden method. The initial population is the actual
number of bioburden present (determined based on the average from three products) and
the microorganism selected is the most sterilization tolerant among the bioburden microor-
ganisms, so it is not always Geobacillus stearothermophilus ATCC 7953 or Bacillus atrophaeus
ATCC 9372. The possibility of Bacillus subtilis may be present as abioburden (see Table 8.1),
but that of Geobacillus stearothermophilus is definitely denied because the latter is a definitely
thermophilic bacteria growing at $5°C. An initial population of 10° CFU/carrier level must
be reduced to a SAL of 1075, so at least a 6 log reduction is required. In this case the Bl is also
self-made, so the ISO 11138-1 requirements must be met and relevant inspections must be
conducted. The absolute bioburden method is the most realistic method, but because the
Bl s self made, and BI users do not want to undergo the required inspections, in most cases
the overkill or combined BI/bioburden method with an initial population of 10 CFU/car-
rier or 10° CFU/ carrier, respectively, are typically used. The absolute bioburden method is
not utilized very often since BI users are reluctant to be inspected by the authorities. The
required six log reduction of the absolute bioburden method is the most appropriate and
realistic and the use of BI organisms (spores) is not always required. The real exposure
time for the absolute bioburden method is significantly less than that for the 9 log or 12 log
reduction required by the combined BI/bioburden or overkill methods, respectively. A Bl
with 10® CFU/ carrier for the BI/bioburden method has less clumping compared with the
10% CFU/carrier BI used in the overkill or half-cycle method, so I recommend the use of
the combined BI/bioburden method with 10° CFU/carrier commercial Bl in place of the
10% CFU/ carrier BI used for the overkill method (12 log reduction) or half-cycle method
(12 log to 16 log reduction). For the commercial B, I recommend the BI from Merck Co.
inoculated on modified SUS carrier because the BI from this company has less clumping as
shown in Figs. 1.2 and 1.4.

The use of the overkill method is restricted to BI manufacturers although BI users also
can be approved to use it, but BI users need not obey the requirements for the BI manufac-
turer as described in ISO 14161. When the combined BI/bioburden method is applied, BI
clumping is low, so it is easy to attain a SAL of 107 with a linear survival curve from 10*to a
SAL of 107° together with material/functional compatibility. For BI manufacturers and for
routine control, the use of 10° CFU/carrier of Bl in ISO 11138-1 is approved. Such a descrip-
tion of a difference of the initial population between validation studies and routine control
is not described in ISO 14161 for BI users. According to the requirements of ISO 14161,
validation studies and routine control must use an identical BI for evaluation. According to
the current ISO documents, less than a 6 log reduction is not allowed because the approved
initial population is 10° CFU/carrier and a SAL of 10~ must be obtained; therefore, a at
minimum of a 6 log reduction is required, although most engineering researchers are satis-
fied with 2 log or 3 log reductions, which are not valid.

It is important to mention that chemical indicators (CI) are not approved for use in vali-
dation studies. CI manufacturers validate CI characteristics and performance according to
the ISO 11140 series and they are also inspected by the authorities. In routine control CI
can be utilized as a support for the B, but use of a CI alone is not approved even for routine
control. The BI is the major requirement for sterilization validation and routine control
because results using Bl and CI do not always coincide.
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How to prepare survival curves

Preparation of survival curves is not exactly within the scope of this book, but when con-
sidering the cause of tailing, it is an important aspect (Joaquin et al., 2009; Wright et al,,
1995). Methods for the preparation of survival curves can be found in ISO 11138-1 Annex
B Survival curve (Normative reference). However, in Annex B, there is no description of
tailing, but as mentioned above the user must seriously consider the problems caused by
clumping when preparing a BI because the coefficient relationship of the prepared survival
curve must be more than 0.8 according to ISO 11138-1 Annex B (Normative reference).
This requirement indicates no that tailing is allowed from an initial population of 10° CFU/
carrier to a SAL of 10°C.

In order to prepare a survivor curve, ten-fold dilutions must be repeated to obtain 30-300
CFU/plate (ISO 14161, 11737-1), and the retrieval procedure to obtain the bioburden or
BI from the products or carrier material, respectively, must be carried out according to ISO
11737-1.In1SO 11737-1, several sorts of retrieval procedures are presented. The person who
conducts the retrieval must validate which method is most appropriate for their products.
The retrieval solution that is commonly used is Tween® 80 containing phosphate-buffered
saline solution at pH 7.4. This is not defined in ISO 111737-1, but it is the most popular
solution when retrieving microorganisms from health care products or BL The retrieval
procedure must be validated individually by referring to ISO 11737-1.

In ISO 11138 Annex C and D (Normative references), the fraction negative methods
for D value calculation are described; these include the Sperman-Karber procedure and
the Stumbo—Murphy—Cochran procedures. The complete fraction negative method is in
ISO 14161 Annex C (Normative reference). On the contrary, no survivor curve method is
described in ISO 14161; it is only described in ISO 11138-1 B (Normative reference).

How to calculate D values

There are two methods to calculate D values. One is by using the survivor curve method,
which is in Annex B (Normative reference) of ISO 11138-1 and the others are fraction nega-
tive methods in ISO 14161 Annex C (normative reference). In regard to the survivor curve
method in ISO 11138-1 Annex B, it is defined that the reduction from an initial population
of 108 CFU to a SAL of 107 must be linear with a coefficient correlation greater than 0.8,
which is quite a stringent requirement.

Fraction negative methods are the Sperman-Karber procedure and Stumbo-Murphy-
Cochran procedures. They are described in Annex C (Normative reference) of ISO 14161
and are for BI users. A description of methods for the calculation of D values is outside of
scope of this book, but BI users need to keep in mind that less than 10° CFU can be used as
an initial population because BI users must obey ISO 14161, not ISO 11138-1.

Conclusion
Many ISO documents must be read and understood in order to conduct sterilization valida-

tion and routine control. If published papers and books do not follow ISO requirements,
these books and papers are considered invalid. Most of the engineering researchers’ papers
and books are invalid because their survivor curves do not attain a SAL of 107, primarily
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because of the use of Bl with clumping. The SALs presented by the engineering researchers’
are 10” to 10° at most, which differs significantly from 1076, which is definitely required by
the ISO documents. Therefore, the data in their books and papers are invalid and unreliable.

In order to avoid the tailing phenomenon from clumping, less than 10° CFU/carrier BI
(such as 10> CFU/ carrier BI) can be used to attain a SAL of 10-%. It should be relatively easy
to attain a SAL of 1076 using the combined BI/bioburden method in ISO 14161 and BI
users should obey this ISO document, not ISO 11138-1, which is only for Bl manufacturers.
If Bl users, including researchers do not follow the requirements of ISO 14161, their papers
and books are useless and invalid.
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Misinterpretation of
Microbiological Data on Gas
Plasma Sterilization: Avoiding
the Pitfalls

Hideharu Shintani

Abstract

In this chapter, we discuss avoidance of clumping, tailing phenomena, and methods for
attaining a SAL of 1076 using a biological indicator (BI). As tailing of a survivor curve is
often caused by clumping of the BI, appropriate techniques and confidential know-how to
avoid such clumping is required. When such a tailing phenomenon is observed, a SAL of
1078 cannot be attained, and therefore no D value (decimal reduction value) can be deter-
mined and the exposure time for a 9 or 12 log reduction remains undefined. The D value
must be determined from the straight line of a 9 log or 12 log reduction survivor curve, and
there can only be one D value per microorganism; there is never more than one D value per
one microorganism.

Introduction

Several papers and books on gas plasma sterilization have been published, mostly by engi-
neering researchers. Due to their insufficient knowledge of sterilization and microbiology,
their papers and books contain many misinterpretations of data in the figures and tables
and descriptions in the text (e.g. Rossi and Kylian, 2012). A typical example is the curved
survival curve (see Fig. 1.3A). In this chapter, Iwould like to convey the correct information
on sterilization, and how to conduct sterilization validation studies and routine control for
Bl users and BI manufacturers.

The requirements for sterilization validation studies and routine control for BI manufac-
turers and BI users are different. BI manufacturers should use 10° CFU/carrier Bl and must
attain a SAL of 107¢ in validation studies (ISO 11138-1). In routine control, it is approved
to use 105 CFU as an initial population, but a SAL of 10~° must be attained according to ISO
11138-1. For Bl users, the use of various initial populations is approved according to ISO
14161, although the initial population used in validation studies and routine control should
be the same. This information is described in detail in Chapter 13.

Sterilization
Sterilization kills all types of bacterial spores and vegetative cells, which means the material
is totally free of bioburden. The bioburden is the number and types of viable microorganisms



142 | Shintani

in/on the products, or the so-called ‘viable contaminants’ In contrast, disinfection only kills
vegetative cells, but not bacterial spores. Decontamination is the removal of spores and veg-
etative cells by a process that does not kill them. The definitions of sterilization, disinfection
and decontamination are described in the book edited by Sakudo and Shintani (2011).

Sterilization is defined by the ISO 11138 series and ISO 14161. However, no ISO docu-

ments on gas plasma sterilization are currently available. Recent Pub Med searches with the
key words ISO and gas plasma sterilization, did not result in any matches. As described in
Chapter 13, the ISO 11138 series is addressed to BI manufacturers and ISO 14161 is for BI
users. According to ISO 11138-1, a BI with an initial population of 10 CFU/carrier must
be used and a sterility assurance level (SAL) of 10~ must be attained, indicating thata 12 log
reduction is required in validation studies. This requirement is only for Bl manufacturers, not
for BI users, so BI users need not follow the 12 log reduction procedure. For example, 10°
CFU/carrier BI has been approved for use by Bl users (Combined BI/bioburden method)
and a SAL of 10-¢ s required, which is a 9 log reduction. Because of the lower population for
a Bl with 10* CFU/carrier, clumping is less of a problem compared with a 105 CFU/carrier
BI; this can be experimentally confirmed by using scanning electron microscopy (SEM).
If there is less clumping, the survivor curve is more likely to be a straight line (see Figs.
1.3B and 1.4) and any tailing phenomenon will be avoided (Ahn et al., 2007; Geeraerdd et
al., 2006; Moison et al., 2001, 2002; Rossi and Kylian, 2012). If the survivor curve shows
tailing, a SAL of 1076 cannot be attained, the D (decimal reduction) value, time or dose to
decrease one log reduction, cannot be determined, and the sterilization exposure time to
achieve a 9 log or 12 log reduction cannot be obtained without any information regarding
a D value. In other words, no valid results can be attained when there is clumping of the BI
and tailing of the survivor curve. The D value must be determined from the straight slope
of a 12 log reduction survivor curve, and there is only one D value per one microorganism.
'The inactivation kinetics follows a first order equation. Even if tailing occurs, there cannot
be more than one D value per microorganism and inactivation kinetics cannot be second
or third order when restricted to Bls such as Geobacillus stearothermophilus ATCC 7953 or
Bacillus atrophaeus ATCC 9372 because they are spore forming bacteria with straight survi-
vor curves against all sorts of sterilization processes tested.

Most engineering researcher’s data show curved survivor curves and report that
inactivation kinetics is first or second order, indicating more than two D values per each
microorganism. Their data are invalid according to the requirements of ISO 14161, because
the D value must be determined from the straight slope from the initial population of 109
CFU/carrier to a SAL of 1075, indicating a 12 log reduction survivor curve. This indicates
that the inactivation kinetics follows a first order equation because the use of Geobacillus
stearothermophilus ATCC 7953 spores as the BI should not result in a tailing phenomenon.
In sterilization validation, a 6 log reduction is not approved except in the absolute bioburden
method in ISO 14161 for BI users.

D values can be obtained by the fraction-negative method using the Stumbo-Murphy-
Cochran procedure and Spermann-Kerber procedure (ISO 14161). These methods require
that from an initial population of 10¢ CFU/carrier to a SAL of 5-1072, the survivor curve
(see Fig. 3.1) must be a straight line, and clumping should not be present. As a description
of the methods for calculation of D values is outside the scope of this chapter, please refer to
ISO 14161 and 1SO 11138-1 and Chapter 13. Procedures for the calculation of D values are
more clearly described in ISO 14161.
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A BI for gas plasma sterilization is not currently defined in any ISO TC 198 documents.
The BI is defined the most sterilization-tolerant non-pathogenic microorganism, and is
generally a bacterial spore former. From the available experimental data, Geobacillus stearo-
thermophilus ATCC 7953 is the most appropriate candidate. In some cases B. atrophaeus
ATCC 9372 has been used, but its bacterial spore are less tolerant than that of Geobacillus
stearothermophilus ATCC 7953 (Deng, et al 2006; Shintani et al., 2007). Most engineer-
ing researchers typically use bacteria that do not form endospores, such as Escherichia coli,
Legionella spp., and so on, but these microorganisms are very susceptible to sterilization
compared with bacterial spores, so their use is invalid. Even if sterilization studies confirm
that E. coli or Legionella spp. can be disinfected, what about Bacillus cereus, which is a patho-
genic spore forming microorganism? This is a major concern because there is a reasonable
chance that bacterial spore formers may be present as a bioburden (as an example, see Table
8.1). How can such studies address whether contaminants such as B. cereus can be sterilized
or not? In order to sterilize pathogenic bacterial spores it is necessary to use an appropriate
BI for confirmation, and the BI must be the most tolerant bacterial spore to the sterilization
procedure because pathogenic bacterial spores present as a bioburden can also be speculated
to be killed. Therefore, sterilization, not disinfection or decontamination must be carried
out. If sterilization is attained using an appropriate B, it is reasonable to consider that other
pathogenic microorganisms of vegetative cell type or even bacterial spores would also be
killed by the same sterilization process, and further experimentation is unnecessary. This
means that for gas plasma sterilization the use of Geobacillus stearothermophilus ATCC 7953
as the Bl is required and use of Bacillus atrophaeus ATCC 9372 is inappropriate.

Gas plasma sterilization has a quite shallow penetration depth of approximately 10-20nm
(Shintani et al., 2007). Because penetration is so shallow, only one layer of bioburden can
be sterilized, and the healthcare products being sterilized remain undamaged. In valida-
tion studies, a SAL of 10-6 and material/functional compatibility must be simultaneously
attained. Among the existing sterilization procedures, no sterilization methods can currently
achieve simultaneous achievement of a SAL of 107 and material/functional compatibility.
If this requirement is strictly enforced for the existing sterilization procedures, there are no
compliant sterilization procedures available, and therefore the use of the existing steriliza-
tion procedures is the result of a compromise. As gas plasma sterilization can successfully
comply with both sterilization requirements, the current compromise will be problematic,
as other sterilization methods will then be strictly required to simultaneously attain both a
SAL of 10 and material/functional compatibility, which is an impossible requirement for
existing sterilization procedures.

Engineering researchers have insufficient knowledge of sterilization and microbiology;
therefore, these should cooperate with microbiologists and chemists to correctly evaluate
their experimental results. Currently, many engineering researchers misinterpret the mean-
ing of a six log reduction and ignore the need to attain a SAL of 1075, as seen by the tailing
phenomenon in their survival curves due to clumping (Shintani et al., 2010; Shintani and
McDonnell, 2011). These researchers need to read ISO 14161 and comprehend the useful-
ness and importance of using an appropriate BI to conduct sterilization validation.

Engineering researchers’ understanding of 6 log reduction is from an initial population of
108 CFU/carrier to SAL of 10° but this is wrong. The correct requirement is the reduction
of an initial population of 10° CFU/carrier to a SAL of 10~%. As mentioned in Chapter 13,2
SAL of 10° CFU is the bioburden level. For this purpose a linear survivor curve is required
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at least from a SAL of 10° to an initial population of 10 CFU/carrier (see Figs. 1.4 and M Oissti?{uﬁéiz
3.1). If a tailed survivor curve is obtained, the experiment is not valid, sterilization has not mechanis:
been attained, and no useful information such as the D value can be determined. A curved Morent, R,, ¢
line at around a SAL of 10, which is commonly seen in engineering researchers’ papers, Engineeri
provides no useful information. They obtain one D value from the initial straight line and Ros;t’eg‘l’i;i;
another D value from the next curved line, which is incorrect. Only one D value exists per Publishin
one microorganism. Shintani, H.,:
in Sterili

Applicati

: York.

Conclusion Shintani, H,,
Obtaining a SAL of 10~® and material and functional compatibility is a difficult task for exist- Antisepsi
ing sterilization procedures. However, in gas plasma sterilization, this requirement can be Shintani, H,,
easily attained because of the shallow penetration depth of the sterilization factors, which Shnaé‘ailmg}
include radicals and metastables; therefore, the BI must be completely free from clumping Inactivati
to avoid any tailing phenomenon due to clumping. Biocontr
If the survivor curve shows tailing, a SAL of 107 cannot be reached and therefore the Tessarolo, F.

D value cannot be defined and the exposure time to attain a 9 or 12 log reduction cannot ;2;100;%21

be determined. Under these conditions sterilization cannot be attained. As engineering
researchers have an insufficient understanding of sterilization and microbiology, they should
cooperate with microbiologists and chemists to evaluate and interpret their experimental
results.
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Future Perspectives and Trends
in Gas Plasma Sterilization

Hideharu Shintani

Abstract

Gas plasma sterilization has a shallow penetration depth of approximately 10-20 nm. Thus,
material and functional compatibility can be easily attained. Sterility assurance ofa 12 log
reduction is not always required of Bl users (ISO 14161). Indeed, a 12 log reduction is quite
difficult to achieve with the current gas plasma process, because a tailing phenomenon in the
survivor curve can occur due to clumping of the biological indicator. Similarly, a 6 log reduc-
tion from 10° CFU/carrier to a SAL of 100 is also difficult to attain as is often seen in the
engineering research. Nonetheless, a 12 log reduction is required in sterilization validation
studies for BI manufacturers according to ISO 11138-1. However, simultaneous attainment
of material/functional compatibility is not required of BI manufacturers in ISO 11138-1
because there are no materials being tested. When using the overkill method, a 12 log reduc-
tion is required together with material/functional compatibility for BI users according to
ISO 14161. To achieve this requirement, deeper penetration of gas plasma sterilization will
be needed in the future, but the penetration depth must be limited in order to maintain
material/functional compatibility.

Future trends

There are several other sterilization procedures beside gas plasma sterilization. The exist-
ing sterilization procedures have deeper penetration capabilities, so even if the biological
indicator (BI) has any clumping, no tailing phenomenon in the survivor curve is observed.
But material/functional compatibility is quite difficult to attain for these existing sterili-
zation procedures due to the deeper penetration depth. For example, ethylene oxide gas
~ and gamma-ray irradiation sterilization penetrate more than 3 and 10 m, respectively, and
 therefore clumping of the BI or multiple layers of bioburden are not problematic for these
sterilization procedures. On the contrary, the penetration depth of gas plasma sterilization
procedure is quite shallow, at around 10-20nm (Shintani, 2007); therefore, it is sufficient
to kill one layer of bioburden without reduction of material/functional compatibility but
insufficient to kill multilayers of bioburden or clumped BI (Shintani et al., 2007, 2010,
2011; Abreu et al., 2013; Stoffels et al., 2004; Baier et al., 1992; Vandervoort and Brelles-
Marino, 2014; Idlibi et al., 2013; Alkawareek et al,, 2012; Tessarolo et al., 2006; Traba et
al., 2013; Fricke et al., 2012; Brelles-Marino, 2012; Cotter et al., 2011; Joaquin, 2009). In
addition, for example fungi, which are large and often in more than one layer, are present
as the bioburden they may be difficult to kill with the 10-20 nm penetration capacity of gas
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plasma exposure. This means that a somewhat deeper penetration would be useful to attain
both a SAL of 10~¢ and material/functional compatibility. A twelve log reduction is required
in sterilization validation together with material/functional compatibility when using the
overkill method (ISO 14161). A twelve log reduction using gas plasma sterilization has not
been reported in any published studies to date. More than a 6 log reduction with a linear
survivor curve were reported only by Shintani, as presented in Fig. 1.4. This is due to the use
of clump-free BI. To attain a 12 log reduction with ease by gas plasma sterilization, a penetra-
tion of at least 1000 nm (1 ym) would be required. Even if the penetration depth were 1 ym,
material and functional compatibility would be maintained and sterility assurance would be
increased to a 12 log reduction rather than a 6 log or 9 log reduction. A 6 log reduction is
for the absolute bioburden method and a 9 log reduction is required for the combined BI/
bioburden method (ISO 14161; see Chapter 13). These requirements are only for BI users
and are only discussed in ISO 14161, but not in ISO 11138-1 as described in Chapter 13.
With the exception of gas plasma exposure, the currently available sterilization procedures
have penetration depths of a few metres, so even if the BI has some clumping, no tailing
phenomenon is observed in the survivor curves for the existing sterilization procedures. But
significant failure of material/functional compatibility attainment often occurs when using
the existing sterilization procedures due to the deeper penetration depth (Shintani, 1995).

Gas plasma sterilization will fail to attain sterility assurance when the sterilization target
consists of highly contaminated items with a large bioburden such as dental materials and
surgical devices; in these cases a 10-20 nm penetration depth is too shallow. Successful ster-
ilization of such items would require an increase in penetration depth of at least 100-fold.
Even if future gas plasma sterilization innovations resulted in a 1-10 um penetration depth,
material/functional compatibility would be maintained together with the achievement of
a SAL of 107 as required by ISO 14161, the authorities and GMP (good manufacturing
practice, http://www.ispe.org/gmp-resources).

The sterilization factors present in gas plasma sterilization have been proposed to be
metastables or photons. By accelerating the metastables or photons before application to
the target items, the penetration depth may become deeper. In actuality, a 10-20 nm pen-
etration depth has been demonstrated to be sufficient for Bl sterilization as long as the Bl is
free from clumping. Under real circumstances, however, several unexpected situations must
be kept in mind to avoid failure of gas plasma sterilization. For example, the bioburden may
have multiple layers or may contain large cells like fungi, or in some cases contain complex
materials like biofilms (Vandervoort and Brelles-Marino, 2014; Trabe et al., 2013; 1dlibi et
al,, 2013; Joaquin et al., 2009: Niemira et al., 2014; Sun et al., 2013; Cotter et al., 2011;
Matthes et al., 2014; Chang et al., 2013; Ojano-Dirain and Antonelli, 2011; Ermolaeva et
al., 2011, 2012; Zelaya et al., 2010; Brelles-Marino, 2010) or waterborne microorganisms
including viable but non-culturable microorganisms (VBNC; Hayes et al., 2013; Brelles-
Marino, 2012; Rowan et al., 2007). Sterilization of the BI is a model sterilization situation,
so complex and highly contaminated targets must be carefully considered in order to avoid
sterilization failure in real-life sterilization situations. A 12 log reduction and material/func-
tional compatibility is required for real sterilization situations according to ISO 14161 and
14937, and for that purpose deeper penetration will be required for future improvement of
gas plasma sterilization.

Gas plasma exposure is not suitable for liquids, oils, powders, or biological tissues such as
highly contaminated items. This is because gas plasma sterilization has inferior penetrating
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ability as mentioned above; therefore, it is applicable for sterilization of the bioburden on
human skin and has no hazardous effects on humans. The advantages of gas plasma steriliza-
tion are that it is fast, it is carried out at low-temperature and it has lower penetration with
no toxic gas residue generated.

Furthermore, although it has been predicted that the factors contributing to the gas
plasma sterilization process may be metastables or photons, this is only speculation, and
therefore the real factors must be defined quantitatively in future studies.

Conclusion
The depth of gas plasma sterilization penetration is quite shallow at around 10-20nm, so

it is easy to attain material/functional compatibility, and a 12 log reduction under standard
conditions for the BL. However, in real world sterilization situations, a 12 log reduction is
very difficult to attain simultaneously with material/functional compatibility due to the
existence of admixtures and the presence of highly contaminated items. If the penetration
depth were increased up to 1 to 10 ym, the requirements for sterilization validation in ISO
14161 could be attained with ease, indicating that material/functional compatibility and a
SAL of 1076 can be attained with only an increase in penetration depth of 100-fold. There-
fore, the development of gas plasma sterilization processes with deeper penetration depths
may be essential in the future. Currently, gas plasma sterilization is restricted to simple
matrix materials, and achievement of deeper penetration is desired so that complex matrix
material can also be sterilized. In addition, if the penetration depth were increased, steriliza-
tion chambers could be made larger, so that more items could be sterilized simultaneously.
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High-performance liquid chromatography 43
see also HPLC
High-voltage electrical discharges 64
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see also LPS Papillomaviru
Lipoxygenase 68 N Paracoccidioid
Liquid chromatography 4S5, 52 N radical 126 Parvovirus 1
Listeria monocytogenes 126 N,0 43 Patulin 60-6
Long wave ultraviolet A 107, 108 NA 106-108 PCR 106,10
see also UV-A NaCl 42 Penetration ¢
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Non-structural protein 108
see also NS
Norovirus 104
NOx 38,43
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see also NP
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Nutritional property 59

o

O radical 95,117,119
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OH 8

OH radical 29,32-38,41, 51, 54, 55, 57, 65, 66,
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OONO radical 41

OONO-~ 25

Organic cleaning §

Organoleptic property 59

Overkill 147

Overkill method 13§, 147

Oxidative stress 107, 124

Oxygen metastable 8

Oxygen radical 114,118,119

Oxygen species 119

Ozone 7, 8,38,43,56,57,63,114, 119,126

P
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PAGE 109

Pantoea agglomerans 77

Papillomavirus 10

Paracoccidioides 92

Parvovirus 10

Patulin 60-62

PCR 106, 108

Penetration 4, 5,12, 147

Penetration capacity 147
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Penicillium italicum 112

Penicillium patulum 60

Penicillium spp. 60, 61, 66,96, 122
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Peroxidase 68
Peroxynitrite anion radical 25, 33-38
Pesticide 111,112
Philodendron erubescens cv. Green Emerald 97
Photometric measurement 52, 56
Photometry S1
Physico-chemical spoilage 59
Phytophthora ramorum 92
Pichia anomala 63
Pichia kluyveri 62,63
Plant pathogen 121
Plant virus 108
Plasma generating atomic hydrogen 94
Plasma jet 94,96
Plastic surface 9
Poliovirus 10
Polyacrylamide gel electrophoresis 109
see also PAGE
Polymerase chain reaction 106, 108
Polyphenoloxidase 68
Polysorbate 78
Polystyrene 15-17, 42,43
Polyvinylidene fluoride 109
see also PVDF
Posaconazole 93
Positiveion 7
Postharvest 59,62,111,112
Prion 10,46,47
Prochloraz 62
Propiconazole 62
Protein 9
Protozoa 10
Protozoal cysts Giardia 10
Providencia 10
Prozoal cocysts 10
Pseudallescheria boydii 91,92
Pseudomonas 10
Puccinia graminis 93
PVDF 109

Q

Quinone outside inhibitors 93

R
Radical 5,7,9
Radiofrequency §,8,12,94,122,126
see also RF
Reactive chemical product 107
Reactive oxygen species 28,29, 32,67, 114
Reactive species 8,9, 51,52, 57, 66,97,98
Reactor 26,27
Rectifier 26,27
Relative humidity 25, 26, 30
Remote plasma 8
Remote sterilization 25
Respiratory syncytial virus 104
see also RSV
RF 5,94
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RH 30, 32-38

Rhizoctonia solani 96,97, 12,123-126
Rhizopus spp. 63,66

Rhodococcus erythropolis 64
Rhodococeus spp. 64

Rhodosporidium paludigenum 63
RNA genome 106

ROS 29, 32,33, 36-38,57,95
Rotavirus 10,104

RSV 104

S

Saccharomyces cerevisiae 62
Saccharomyces spp. 77
SAL 1-5,10,12,14,15,17-19,25,77-82,131,
135-138,141-144,147-149
Salmonella 104
Salmonella spp. 126
Scanning electron microscopy 16, 18, 82, 106,
107
SCDA 78,81
SCDB 29, 81
SCDLP 78
Scedosporium 92
Scedosporium prolificans 91,92
Scrapie 10
SDS 109
SDS-PAGE 109
Second positive band 117
Second positive system 108
Seed 121,122, 124-128
Seed-borne 122
Seed-borne pathogen 121
SEM 3, 16, 18, 31, 37, 82, 106, 107
SF6 65-68,97,122
Short high-voltage pulse 103, 10S
SI 103,105
Si 114-116
Silicon 113
see also Si
SIThy 26
Sodium dodecyl sulfate 109
see also SDS
Soybean casein digest agar 78, 81
Soybean casein digest agar lecithin
polysorbate 78
Soybean casein digest broth 29, 81
Spectrometer 56
Spermann-Kerber procedure 142
Spin adduct 55
Spore 15,68, 66,75,91,95,96,98, 104, 113,
117,119,126,135, 142, 143
Sporicidal S
Stachybotrys 92
Staphylococcus 10
Staphylococcus aureus 104
Staphylococcus capitis 77
Staphylococcus cohnii subsp. cohnii 77

Staphylococcus epidermidis 77
Staphylococcus haemolyticus 77
Staphylococcus hominis 77
Staphylococcus intermedius 77
Staphylococcus pasteuri 77
Staphylococcus saprophyticus 77
Staphylococcus schleiferi 77
Staphylococcus vitulus 77
Static induction 103,105
see also SI
Static induction thyristor 26
see also SIThy
Stemphylium spp. 122
Sterility assurance 147, 148
Sterility assurance level 1, 10, 11
Sterilization 1,5,9,11, 12, 18, 19, 25, 26, 30, 38,
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131,132, 136, 141, 144, 147-149,
Sterilization guidelines 25
Sterilization validation 1, 12, 80, 149
Sterilization-tolerant non-pathogenic
microorganism 143
Sterol demethylation inhibitors 93
Sterrad 4,41
Streptococcus 10
Streptococcus sanguinis 77
Strip type plasma in package 94
Stumbo-Murphy-Cochran procedure 30, 79,
137,142
Superoxide anion 33
Surface modification §, 104
Survivor curve 3, 81, 142
SUS 132,136

T

Tailed survivor curve 144
Tailing 4, 142, 147, 148
TCA cycle 30,81
TCID,, 106, 109
Tebuconazole 62
Tensile test 19
Tetrodotoxin 51, 52
Thermographic image 115
Thermography 115
Thermo-sensitive S
Thyristor 103, 105
Tissue culture infectious dose S0 106
see also TCID
Toxic substance S7
Tricarboxylic acid 30
Tricarboxylic acid cycle 81
see also TCA cycle
Trichoderma 61,91
Trichoderma viride 63
Trichophyton 10
Trichophyton interdigitale 94,95
Trichophyton rubrum 94,95
Trichosporon mycotoxinivorans 63
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Ultraviolet/visible spectrometer 56

UV 8,56,63,95,114,117,118,119,124

UV-A 107,108,117
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Gas Plasma $Sterilization in
Microbiology

Theory, Applications, Pitfalls and New Perspectives

Gas plasma is the fourth state of matter, alongside solid, liquid, and gas. There
are many naturally occurring events and man-made products related to gas
plasma including: aurora, thunderstorms, high-intensity discharge headlamp
bulbs, oxonizers, semiconductors, and solar battery panels. A gas plasma
is generated by removing electrons from a gas, e.g. N,, to produce a highly
excited mixture of charged nuclei and free electrons. It has enormous potential
as a broad spectrum antimicrobial sterilization procedure with applications in
medical, industrial and agricultural settings (e.g. decontamination of medical
instruments). A major advantage is the shallow penetration of gas plasmas:
only ~10-20 nm from the surface thereby minimising damage to the material
being sterilized. An important obstacle to overcome is the ‘understahding-
gap’ between the engineering researchers who are developing the gas plasma
sterilization technology and the microbiologists who aim to fine tune it for
their needs. This timely volume aims to bridge that gap, permitting engineers
and microbiologists to develop more coherent multidisciplinary strategies.

The book opens with introductory chapters that explain the background and
principles of gas plasma sterilization and outline the possible mechanisms of
action. Requirements for achieving the ‘gold-standard’ sterilization level i.e. a
sterility assurance level (SAL) of 10, is also covered. The next eight chapters
cover applications of this technology: these range from the inactivation of
spores and endotoxins to inactivation of viruses and seed-borne plant
pathogens. The final chapters tackle sterilization validation (from several ISO
documents), common data-interpretation errors and speculate about future
trends. ;

This book is an indispensable reference for students, microbiologists,
engineers, and laboratory scientists interested in sterilization and
decontamination.

ISBN 978-1-910190-25-8

'l )N ”‘l ”l “ www.caister.com
9781910190258
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